Reset

Division Director

Amor Menezes is an Assistant Professor in the Department of Mechanical and Aerospace Engineering at the University of Florida. He is the Science Principal Investigator of the five-year, multi-university, Center for the Utilization of Biological Engineering in Space (CUBES), a NASA Space Technology Research Institute in biomanufacturing for deep space exploration. He also leads the Systems Design and Integration Division of CUBES.

Dr. Menezes' research interests are in dynamical systems theory and control, with applications to the fields of systems biology and synthetic biology. He is an IEEE Senior Member. He was a 2015 Emerging Leader in Biosecurity and a 2015 fellow of the Synthetic Biology Leadership Excellence Accelerator Program.

He was an Associate Project Scientist in the California Institute for Quantitative Biosciences (QB3) at the University of California, Berkeley from 2016 to 2017, and a QB3 Postdoctoral Scholar from 2011 to 2016. He was a Research Fellow between 2010 and 2011 in the Department of Aerospace Engineering at the University of Michigan, where he received a Ph.D. as an NSERC Post-Graduate Scholar and Michigan Teaching Fellow in 2010, and a Master of Science in Engineering as a Milo E. Oliphant Fellow in 2006. He graduated from the University of Waterloo in 2005 with a Bachelor of Applied Science in Mechanical Engineering with Distinction, Dean's Honors (top 10%), and the Sandford Fleming Co-op Medal.

Senior Scientist

Dr. Takashi Nakamura received his Ph.D. in Aeronautics and Astronautics from MIT and his B.S. in Aeronautical Engineering from the University of Tokyo. Currently, he is the manager of Space Exploration Technologies at Physical Sciences Inc. (PSI), and has been involved in numerous R&D programs sponsored by NSF, NASA, DoE and DoD. 

Dr. Nakamura has been developing, with funding from the Air Force and NASA, a unique space solar power system for power generation, propulsion, materials processing, and plant lighting in space. This concept is based on the use of optical fibers for transmission of solar radiation, the concept Dr. Nakamura pioneered in 1976 while he was at Japan's Electrotechnical Laboratory. Dr. Nakamura is an Associate Fellow of AIAA, a member of AAS and Sigma Xi.

Graduate Student

Aaron Berliner is a Bioengineering graduate student in the Arkin Laboratory at UC Berkeley/UCSF. He studied bioengineering, control theory, synthetic and systems biology, and nanotechnology at Boston University. In 2012, he began working as a research associate at the NASA Ames Research Center on projects involving 3D printing, bioelectrochemistry, and astrobiology. In 2013, he started as a research scientist in the Life Sciences group of Autodesk Research in San Francisco. At Autodesk, Aaron’s work ran the gamut from bioprinting, software engineering, synthetic virology, and DNA origami until 2016 when he moved back to space biology. Forming a partnership between UC Berkeley, Autodesk, and NASA Ames, Aaron began construction for Crucible, an open-source reactor for space synthetic biology experiments until 2017 when he started as a graduate student with Adam Arkin. He enjoys playing with his Mars-in-a-jar reactors. Aaron helped author the STRI grant that launched CUBES and is an NSF graduate fellow. His alternative scientific interests are terraforming and radiation biology. Aaron likes whiteboards and dry erase markers and dirty models with clean math.
 

Undergraduate Student

Mia Mirkovic is a second-year undergraduate student in the Electrical Engineering and Computer Sciences department at the University of California, Berkeley pursuing mixed-signal processing and circuit design. Her interests include systems modeling and control, imaging, representation theory, modern music technology and history, and radio.

She works with Aaron Berliner on the development of Crucible, an open-source, 3D-printable chamber for space synthetic biology experiments, and mathematical models for Martian in-situ resource utilization for life support, power, and an integrated, multi-function, multi-organism bio-manufacturing system to produce fuel, food, and materials. These models will likely underlie a software package for accelerating mission design and simulation.