Reset

Division Director

Craig Criddle is a Professor in the Department of Civil and Environmental Engineering at Stanford University, and a Senior Fellow at the Woods Institute for the Environment. He is the Institutional Co-I for CUBES at Stanford and the lead of the Biofuel and Biomaterials Manufacturing Division of CUBES.

Dr. Criddle is interested in the environmental engineering, science, and science literacy needed for clean water, clean energy, and healthy ecosystems. His research focus is environmental biotechnology. He is best known for large interdisciplinary field projects, studies of microbial
ecology in bioreactors, and work on microbial transformations of persistent contaminants. Some current projects include a field-scale evaluation of uranium remediation; DNA-monitoring of microbial community structure at full-scale biological wastewater treatment plants; development of membrane bioreactors for energy recovery and nutrient removal; and studies to elucidate the mechanisms and kinetics of microbial transformation of halogenated solvents. To promote science literacy, he worked with award-winning San Francisco cartoonist, Larry Gonick to write "The Cartoon Guide to Chemistry." "Cartoons can give us an intuitive feeling for the why, and deeper understanding can grow from that intuition."

Faculty

Doug Clark is the Gilbert Newton Lewis Professor in the Department of Chemical and Biomolecular Engineering and the Dean of the College of Chemistry of the University of California Berkeley.

Dr. Clark’s research interests are in biochemical engineering and biocatalysts. His research is in the field of biochemical engineering, with particular emphasis on enzyme technology, biomaterials, and bioenergy. Current projects include the structural characterization and activation of enzymes in non-aqueous media, the development of metabolic biochips for high-throughput catalysis and bioactivity screening, protein design and assembly for the development of advanced biomaterials, and enhanced conversion of lignocellulosic feedstocks to biofuels.
 

Ali Mesbah is an Assistant Professor in the Department of Chemical and Biomolecular Engineering at the University of California Berkeley. Dr. Mesbah's research interests are in optimization-based systems analysis, fault diagnosis, and predictive control of uncertain and stochastic systems.

Before joining UC Berkeley, Dr. Mesbah was a senior postdoctoral associate at MIT. He holds a Ph.D. degree in systems and control from Delft University of Technology. Dr. Mesbah is a senior member of the IEEE and AIChE. He was awarded the AIChE's 35 Under 35 Award in 2017 for his contributions in the area of systems and process control.

Robert Waymouth headshot
Robert Waymouth

Robert Waymouth is the Robert Eckles Swain Professor in the Department of  Chemistry at Stanford University. Dr. Waymouth investigates new catalytic strategies to create useful new molecules, including sustainable polymers, synthetic fuels, and bioactive molecules. In one such breakthrough, Professor Waymouth and IBM researcher Jim Hedrick opened a new path for production of environmentally sustainable plastics and improved plastics recycling, earning recognition in the 2012 Presidential Green Chemistry Award.

The Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. The Waymouth group pioneered the development of catalysts that can access multiple kinetic states during a polymerization reaction in order to control sequence distribution. They devised a novel strategy for the synthesis of elastomeric polypropylene utilizing a metallocene catalyst whose structure was designed to interconvert between chiral and achiral coordination geometries on the timescale of the synthesis of a single polymer chain.

In collaboration with Jim Hedrick of IBM laboratories, the Waymouth Group has developed an extensive platform of organic catalysts for the controlled ring-opening polymerization of lactones, carbonates and other heterocyclic monomers. Mechanistic studies of nucleophilic N-heterocyclic carbene catalysts revealed an unusual zwitterionic ring-opening polymerization method which enabled the synthesis of high molecular weight cyclic polymers, a novel topology for these biodegradable and biocompatible macromolecules. In collaboration with the Wender group, the Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver drugs and probes into cells. These efforts combine elements of mechanistic organic and organometallic chemistry, polymer synthesis, and homogeneous catalysis to rationally design new macromolecular structures.
 

Postdoctoral Scholar

Artavazd Badalyan received a Diploma in chemistry from the Lomonosov Moscow State University in Russia and a Ph.D. in analytical biochemistry in the group of Prof. Ulla Wollenberger from the University of Potsdam in Germany where he focused on the bioelectrochemistry of molybdenum hydroxylases and on the development of electrochemical biosensors. He was a postdoctoral research associate with Prof. Shannon Stahl at the Department of Chemistry at the University of Wisconsin-Madison in the field of organic electrochemistry where he developed a novel bioinspired electrocatalyst system for the low-potential alcohol oxidation. Following a position at the Draegerwerk AG as a project leader in the field of electrochemical sensors, he joined the group of Prof. Lance Seefeldt at the Department of Chemistry and Biochemistry at the Utah State University and works on the (bio)electrocatalysis for nitrogen fixation.

Kristian is an NSERC post-doctoral fellow in Environmental Engineering and Science at Stanford University. His current research focuses on: Hard-wiring bacteria in a microbial battery, salinity gradient energy production from a mixing entropy battery, and PHB bioplastic production from C. Necator. His PhD was in Chemical and Biological Engineering from the University of British Columbia in Vancouver.
 

Soumyajit Sen Gupta has been a member of the SDID division of the CUBES since March 2018. Prior to joining the CUBES as a post doctoral research associate with Dr. Amor Menezes, he was a doctoral research scholar at Indian Institute of Technology, Bombay since 2012. His doctoral thesis was on integrated plant-wide optimization of microalgae biorefinery, co-producing fuel, food and chemicals. He is a Bachelors' (2010 batch) from Jadavpur University and Masters' (2012 batch) from Indian Institute of Technology, Kharagpur; both these degrees have been in the discipline of Chemical Engineering. His research interests are in the area of systems design, modeling and optimization, renewable energy and process systems engineering.
 

Kalimuthu Karuppanan is a Postdoctoral scholar in the Department of Chemical Engineering, at the University of California, Davis. He received his Ph.D. in Biotechnology and M.S. degree in Plant Science from Madurai Kamaraj University, India. Since he has been at UC Davis Dr. Karuppanan has contributed to a number of research projects funded by DARPA, DTRA, and NSF and he has mentored many Ph.D. students and undergraduate researchers. He was the instructor for ECH161L, Bioprocess Engineering Laboratory course, in 2014 at UC Davis. He received the campus-wide Award for Excellence in Postdoctoral Research in 2016 and Phil Thai Memorial Award in Medicine for Lung Research in 2015 for his outstanding research performance. He is a co-inventor in a recently filed patent on Novel Fusion Proteins for Treating Inflammatory Diseases.  Dr. Karuppanan is a CUBES Co-PI and member of the Food and Pharmaceutical Synthesis Division.

His research is in protein biotherapeutics for treating infectious and non-infectious diseases. He has extensive experience in recombinant protein bioprocessing in planta. His work includes gene design, designing vector systems for agrobacterial-mediated gene transfer in plants, protein expression using plants and plant cell suspension cultures, protein purification using affinity and traditional chromatography systems, biophysical and functional characterization of recombinant proteins, and drug efficacy improvement by enzymatic glycan modification. 

Yuexiao Shen joined Prof. Peidong Yang’s group at UC Berkeley as a postdoc in October, 2017. He finished his Ph.D. from the department of Chemical Engineering at Penn State in 2016. During his Ph.D., he worked on several projects in the interdisciplinary areas of chemical engineering, biology, chemistry and material science. He was focused on developing bioinspired membranes using membrane proteins that mimic the rapid and selective transport as seen in biological membranes. He extended to explore the potential of mimicking biological channels and lipids using supramolecular chemistry and investigating them using biophysical techniques. Yuexiao finished his bachelor and master degrees at Tsinghua University, where he studied environmental engineering. His academic accomplishments include several high-quality publications in journals such as PNAS, JACS and Journal of Membrane Science (JMS), and have been recognized by nationwide academic organizations with a number of very competitive awards. Yuexiao has already been offered an assistant professor position at Department of Civil, Environmental, and Construction Engineering at Texas Tech.
 

Currently Su is a postdoctoral researcher working with Professor Peidong Yang at University of California, Berkeley. His current research focuses on the bioelectrochemical CO2 fixation and N2 reduction. He received his Ph.D. degree in Chemistry on September 2017, with Professor Peidong Yang at University of California, Berkeley. During the Ph.D., he was awarded the MRS Graduate Student Award and the Chinese Government Award for Outstanding Self-financed Student Abroad. Su obtained his B.S. degree in Chemistry from University of Science and Technology of China on 2012, before joining the Peidong Yang Group as a graduate student.

Graduate Student

Anthony Abel is a Ph.D. student in Chemical Engineering in the Clark Laboratory at UC Berkeley. Previously, he earned his B.S. in Chemical Engineering and M.S. in Materials Science at Drexel University in Philadelphia, PA, where he developed solution deposition techniques for inexpensive semiconductor materials. He has previously worked for the National Renewable Energy Laboratory, where he designed reactors for the sustainable production of hydrogen via photoelectrochemical water splitting. 

Anthony’s research interests lie at the intersection of chemical engineering, materials science, and microbial synthesis. Within CUBES, he will focus on the simulation and design of hybrid bioinorganic reactors and engineering microbes to function optimally within this artificial environment.

In his spare time, Anthony is a mentor for Bay Area Graduate Pathways to STEM, and enjoys reading science fiction and playing squash.
 

Pauline received a bachelor's degree and a master's degree in pharmaceutical sciences from the University of Lyon, France. She is currently a visiting scholar in the Department of Chemical Engineering in the McDonald Laboratory at UC Davis.

George earned a B.S. in Chemical Engineering and a M.S. in "Process, Simulation, Optimization, and Control" from the University of Patras (Greece) in 2016 and 2018, respectively. While there, he was a member of the “Laboratory of Fluid Mechanics and Rheology” where his research focused on the rheology and numerical simulation of flows involving complex yield-stress fluids. He is now pursuing a PhD in Chemical Engineering at University of California, Berkeley, working in the “Process Systems and Control Laboratory”. His current research interests lie in learning-based optimal control of complex systems that intrinsically contain uncertainties. As a member of CUBES, he will be part of the SDID, focusing on systems engineering, process modelling, dynamic optimization and control. His motivation for studying Chemical Engineering was his particular interest in mathematics as a high-school student, as well as his enthusiasm in applying scientific principles towards solving real-world problems.

Matt received his B.S. in Chemical Engineering from the University of Massachusetts, Amherst. He previously worked as a process engineer for Sanofi Genzyme. His current research focuses on developing a novel biologically-derived bioseparations platform for limited resource environments.
 

Vince is a first-year Ph.D. student in chemistry at Stanford University; he is interested in creating biodegradable organic materials as well as designing materials processing techniques such as additive manufacturing in order to make functional parts from biodegradable materials feasible for replacing petroleum based plastics. His role in CUBES will be to create and optimism polymeric systems based on methanotrophic polyhydroxyalkanoate production for the closed-loop manufacturing of tools. Before starting his graduate work at Stanford, he studied mechanical engineering and chemistry at Colorado School of Mines where he created block copolymer materials for hydrogen fuel cell membranes and computed degradation mechanisms for small molecule bis-azide species. He also worked as a design engineer at RICOH where he designed, 3D printed, and tested small parts for improving large-scale ink-jet printer functions. Vince likes to hike and carve wood in his free time. 
 

Undergraduate Student

Jesse Michael Delzio
Jesse Michael Delzio
Areas of Interest:

Jesse Delzio is a third year biochemical engineering undergraduate at the University of California, Davis. He began researching in Dr. Karen McDonald's lab group in July 2017 and is currently researching drug purification through the functionalization of viral coat proteins to be used for simpler isolation in low resource environments such as Mars. He is currently working under the mentorship of Matthew McNulty. His interests include chemical engineering, biotechnology, and plant engineering. Jesse has investigated the expression and capture of recombinant parathyroid hormone from different lettuce varieties. He has also provided calculations of land area and expression levels required to sustain a team of astronauts on Mars. 

Prior to his research in Dr. McDonald's lab, Jesse worked as a lab intern for a chemical company in San Diego called Designer Molecules Inc. His main interests were chemistry and physics. He applied to the University of California, Davis and studied chemical engineering for his first two years. After discovering a project involving biomanufacturing for deep space exploration led by Dr. McDonald, Jesse's interest in biotechnology and biology grew, urging him to switch majors to biochemical engineering. He has been researching for the Center for the Utilization of Biological Engineering in Space on their Mars exploration project ever since.
 

Brendan, originally from Austin, TX, is a second-year chemical engineering major with a concentration in biotechnology. His research interest lies in the intersection of chemical engineering and synthetic biology. As a part of CUBES, Brendan is currently working with postdoctoral scholar Jacob Hilzinger to genetically engineer cyanobacteria to produce useful biomass in both Earth-based and Mars-based economies.