Bruce Bugbee headshot
Bruce Bugbee
Areas of Interest:

Bruce Bugbee is Professor in the Department of Plants, Soils, and Climate at Utah State University. He received his PhD from Penn State University and his MS from the University of California at Davis. He joined the faculty at Utah State University in 1981.
Dr. Bugbee uses controlled environments to examine plant-environment interactions. His research has included phytoremediation, algal biofuels, photobiology, and plant water relations. His career has been guided by the idea that teaching is the highest form of understanding. He has mentored 33 graduate students, eight of whom are now on the faculty at other universities. He was awarded the Utah Governor's Medal for Science in 2012, the D. Wynne Thorne lifetime research achievement award in 2016, and the Distinguished alumni award from Penn State University in 2017.   He recently gave a TEDx talk titled, “Turning water into food.”  

Doug Clark is the Gilbert Newton Lewis Professor in the Department of Chemical and Biomolecular Engineering and the Dean of the College of Chemistry of the University of California Berkeley.

Dr. Clark’s research interests are in biochemical engineering and biocatalysts. His research is in the field of biochemical engineering, with particular emphasis on enzyme technology, biomaterials, and bioenergy. Current projects include the structural characterization and activation of enzymes in non-aqueous media, the development of metabolic biochips for high-throughput catalysis and bioactivity screening, protein design and assembly for the development of advanced biomaterials, and enhanced conversion of lignocellulosic feedstocks to biofuels.

Dr. Coleman-Derr received his graduate education at the University of California at Berkeley in the lab of Dr. Daniel Zilberman in the Plant and Microbial Biology Department, studying mechanisms of epigenetic regulation of transcription in the model plant Arabidopsis. He then completed a post-doctoral research position at the Joint Genome Institute in the group of Dr. Susannah Tringe studying the microbial ecology of the root systems of desert succulents; in this role he also served as bioinformatic support on multiple JGI collaborative metagenomic research efforts involving analysis of 16S rRNA tag data from a variety of environmental and host-associated samples. Dr. Coleman-Derr now leads a research team for the United States Department of Agriculture’s Agricultural Research Service, where he aims to improve our understanding of the effect of abiotic stress on the plant microbiome, and to help identify plant growth promoting microbes capable of alleviating drought stress in their plant hosts. Current research involves several projects related to drought stress response in Sorghum bicolor (sorghum), including investigations into the changes in rhizosphere community composition under drought stress, a genome wide association study to reveal host loci controlled by drought tolerance-inducing root endophytes, and a screen of a collection of cereal endophytes for the ability to confer drought tolerance in sorghum. Dr. Coleman-Derr was awarded the USDA’s Scientist of the Year Award in 2017 for his contributions in this area.

Ali Mesbah is an Assistant Professor in the Department of Chemical and Biomolecular Engineering at the University of California Berkeley. Dr. Mesbah's research interests are in optimization-based systems analysis, fault diagnosis, and predictive control of uncertain and stochastic systems.

Before joining UC Berkeley, Dr. Mesbah was a senior postdoctoral associate at MIT. He holds a Ph.D. degree in systems and control from Delft University of Technology. Dr. Mesbah is a senior member of the IEEE and AIChE. He was awarded the AIChE's 35 Under 35 Award in 2017 for his contributions in the area of systems and process control.

Somen Nandi is an Adjunct Professor in the Department of Chemical Engineering and the Managing Director of Global HealthShare® initiative at the University of California, Davis.
Dr. Nandi has been working on molecular breeding technology to produce the heterologous proteins in different platforms for past 18 years. He has extensive experience on the application of bioprocess engineering technologies to produce recombinant proteins (including human therapeutic proteins and enzymes) using seeds, whole plants, harvested tissues or cells grown in vitro in bioreactors as hosts, improve efficacy of target molecule by enzymatic glycan modification and performing techno-economic analyses. This multidisciplinary effort led to the development of five products, now in the market and two molecules in human clinical trials. He is interested in translational research and continually strives to develop processes that are scalable, cost effective, and meet quality specifications and regulatory requirements. Somen leads large multifaceted programs and is experienced teaching and mentoring both in developing and developed countries, including managing teams with diverse expertise, cultural, and ethnic backgrounds. Somen’s research efforts in CUBES are to produce therapeutic proteins and food via optimization of plant metabolic engineering and in limited resource environment like Mars.

Dr. Trenton (Trent) Smith is an Associate Professor of Biology at Simpson University in Redding, California. He received his Ph.D. in the lab of Dr. Vicki Vance at the University of South Carolina in 2001, studying viral suppression of RNA interference in plants. Specifically, he generated and studied suppression of RNAi in transgenic Arabidopsis thaliana expressing the helper component proteinase from Turnip Mosaic Virus. In early 2018, Dr. Smith joined with the lab of Dr. Karen McDonald at UC Davis, as a visiting scientist. He is designing systems to express cell wall-degrading enzymes in potato, as part of the biofuels work of CUBES.

Robert Waymouth headshot
Robert Waymouth

Robert Waymouth is the Robert Eckles Swain Professor in the Department of  Chemistry at Stanford University. Dr. Waymouth investigates new catalytic strategies to create useful new molecules, including sustainable polymers, synthetic fuels, and bioactive molecules. In one such breakthrough, Professor Waymouth and IBM researcher Jim Hedrick opened a new path for production of environmentally sustainable plastics and improved plastics recycling, earning recognition in the 2012 Presidential Green Chemistry Award.

The Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. The Waymouth group pioneered the development of catalysts that can access multiple kinetic states during a polymerization reaction in order to control sequence distribution. They devised a novel strategy for the synthesis of elastomeric polypropylene utilizing a metallocene catalyst whose structure was designed to interconvert between chiral and achiral coordination geometries on the timescale of the synthesis of a single polymer chain.

In collaboration with Jim Hedrick of IBM laboratories, the Waymouth Group has developed an extensive platform of organic catalysts for the controlled ring-opening polymerization of lactones, carbonates and other heterocyclic monomers. Mechanistic studies of nucleophilic N-heterocyclic carbene catalysts revealed an unusual zwitterionic ring-opening polymerization method which enabled the synthesis of high molecular weight cyclic polymers, a novel topology for these biodegradable and biocompatible macromolecules. In collaboration with the Wender group, the Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver drugs and probes into cells. These efforts combine elements of mechanistic organic and organometallic chemistry, polymer synthesis, and homogeneous catalysis to rationally design new macromolecular structures.

Peidong Yang headshot
Peidong Yang
Areas of Interest:

Peidong Yang received a B.S. in chemistry from University of Science and Technology of China in 1993 and a Ph.D. in chemistry from Harvard University in 1997. He did postdoctoral research at University of California, Santa Barbara before joining the faculty in the department of Chemistry at the University of California, Berkeley in 1999. He is currently professor in the Department of Chemistry, Materials Science and Engineering; and a senior faculty scientist at the Lawrence Berkeley National Laboratory. He is S. K. and Angela Chan Distinguished Chair Professor in Energy. He was recently elected as MRS Fellow, and as a member of the National Academy of Sciences and American Academy of Arts and Sciences.

He is the director for California Research Alliance by BASF, and co-director for the Kavli Energy Nanoscience Institute. He is one of the founding members for DOE Energy Innovation Hub: Joint Center for Artificial Photosysnthesis (JCAP) and served as its north director for the first two years.  Yang is an associate editor for Journal of the American Chemical Society and also serves on editorial advisory board for number of journals including Acct. Chem. Res. and Nano. Lett. He was the founder of the Nanoscience subdivision within American Chemical Society. He has co-founded two startups Nanosys Inc. and Alphabet Energy Inc. He is the recipient of MacArthur Fellowship, E. O. Lawrence Award, ACS Nanoscience Award, MRS Medal, Baekeland Medal, Alfred P. Sloan research fellowship, the Arnold and Mabel Beckman Young Investigator Award, National Science Foundation Young Investigator Award, MRS Young Investigator Award, Julius Springer Prize for Applied Physics, ACS Pure Chemistry Award, and Alan T. Waterman Award. According to ISI (2002-2012, Thomas Reuters), Yang is ranked as No. 1 in materials science and No. 10 in chemistry based on average citation per paper. His main research interest is in the area of one dimensional semiconductor nanostructures and their applications in nanophotonics and energy conversion