Reset

Postdoctoral Scholar

Dr. Nils Averesch is a Postdoc in the Criddle group at Stanford University, California, USA. Before joining CUBES, Nils was the Synthetic Biology Task Lead with Universities Space Research Association as an Associate Scientist at NASA Ames Research Center in Mountain View, California, USA. He received his PhD in 2016 from the University of Queensland in Brisbane, Australia, where he focused on Metabolic Engineering at the Centre for Microbial Electrochemical Systems. He holds an engineer’s degree (Dipl. Ing.) in Biochemical Engineering, from the Technical University of Dortmund in Dortmund, Germany, having graduated in 2011.

Artavazd Badalyan received a Diploma in chemistry from the Lomonosov Moscow State University in Russia and a Ph.D. in analytical biochemistry in the group of Prof. Ulla Wollenberger from the University of Potsdam in Germany where he focused on the bioelectrochemistry of molybdenum hydroxylases and on the development of electrochemical biosensors. He was a postdoctoral research associate with Prof. Shannon Stahl at the Department of Chemistry at the University of Wisconsin-Madison in the field of organic electrochemistry where he developed a novel bioinspired electrocatalyst system for the low-potential alcohol oxidation. Following a position at the Draegerwerk AG as a project leader in the field of electrochemical sensors, he joined the group of Prof. Lance Seefeldt at the Department of Chemistry and Biochemistry at the Utah State University and works on the (bio)electrocatalysis for nitrogen fixation.

Daniel received his Ph.D. in Plant Biology with a designated emphasis in biotechnology from the University of California, Davis in 2017. Daniel’s research utilized a multidimensional approach to better understand the immune response initiated by XA21, a rice immune receptor that provides resistance to bacterial leaf blight (BLB) disease. As part of his Ph.D. studies, Daniel also performed research at the International Rice Research Institute in the Philippines, where he used marker-assisted selection to develop stacked resistance to BLB in the Swarna-Sub1 rice variety, which is tolerant to flooding and favored by millions of subsistence farmers in India. Daniel also interned with East-West Seed Group in Thailand, where he developed genetic markers to distinguish isolates of Colletotrichum spp. causing pepper anthracnose and Fusarium oxysporum f. sp. momordicae causing Fusarium wilt on bitter gourd. 

Daniel is currently a post-doctoral scholar in Devin Coleman-Derr’s group at the University of California, Berkeley where he is exploring ways to minimize the challenges of extraterrestrial farming, including finite resources and limited growing space within controlled-environment agricultural systems. Focusing on rice, Daniel is using a microbiome-based approach to select plant growth promoting bacteria that enhance phosphorus and water-use efficiencies. Additionally, he is using CRISPR/Cas9 based-gene editing to generate rice plants with increased conversion efficiency of light into edible biomass.
 

Kristian is an NSERC post-doctoral fellow in Environmental Engineering and Science at Stanford University. His current research focuses on: Hard-wiring bacteria in a microbial battery, salinity gradient energy production from a mixing entropy battery, and PHB bioplastic production from C. Necator. His PhD was in Chemical and Biological Engineering from the University of British Columbia in Vancouver.
 

Wenyu Gu is currently a postdoc at Stanford University. 
 

Soumyajit Sen Gupta has been a member of the SDID division of the CUBES since March 2018. Prior to joining the CUBES as a post doctoral research associate with Dr. Amor Menezes, he was a doctoral research scholar at Indian Institute of Technology, Bombay since 2012. His doctoral thesis was on integrated plant-wide optimization of microalgae biorefinery, co-producing fuel, food and chemicals. He is a Bachelors' (2010 batch) from Jadavpur University and Masters' (2012 batch) from Indian Institute of Technology, Kharagpur; both these degrees have been in the discipline of Chemical Engineering. His research interests are in the area of systems design, modeling and optimization, renewable energy and process systems engineering.
 

Jake hails from the far-away lands of the Midwest. He received his Bachelor's degree in Genetics from the University of Wisconsin-Madison where he was introduced to the world of scientific research through the study of the evolution of gene expression regulation in the yeast Saccharomyces cerevisiae. Upon graduation, Jake began his graduate work in Marine Studies at the University of Delaware where he studied the regulation of energy metabolism in green sulfur bacteria (the Chlorobiaceae). Being a microbiologist that had always admired synthetic biology from a distance, and one that was enamored with space exploration, Jake joined the Arkin Lab at the University of California-Berkeley as a postdoc to pursue applications of microbial engineering to space exploration and colonization. Jake's research interests include environmental microbiology, microbial physiology/systems biology, genetics, synthetic biology, and space bioengineering. 
 

Kalimuthu Karuppanan is a Postdoctoral scholar in the Department of Chemical Engineering, at the University of California, Davis. He received his Ph.D. in Biotechnology and M.S. degree in Plant Science from Madurai Kamaraj University, India. Since he has been at UC Davis Dr. Karuppanan has contributed to a number of research projects funded by DARPA, DTRA, and NSF and he has mentored many Ph.D. students and undergraduate researchers. He was the instructor for ECH161L, Bioprocess Engineering Laboratory course, in 2014 at UC Davis. He received the campus-wide Award for Excellence in Postdoctoral Research in 2016 and Phil Thai Memorial Award in Medicine for Lung Research in 2015 for his outstanding research performance. He is a co-inventor in a recently filed patent on Novel Fusion Proteins for Treating Inflammatory Diseases.  Dr. Karuppanan is a CUBES Co-PI and member of the Food and Pharmaceutical Synthesis Division.

His research is in protein biotherapeutics for treating infectious and non-infectious diseases. He has extensive experience in recombinant protein bioprocessing in planta. His work includes gene design, designing vector systems for agrobacterial-mediated gene transfer in plants, protein expression using plants and plant cell suspension cultures, protein purification using affinity and traditional chromatography systems, biophysical and functional characterization of recombinant proteins, and drug efficacy improvement by enzymatic glycan modification. 

kbsander [AT] berkeley [DOT] edu

Kyle Sander grew up in Portland, Oregon and attended Oregon State University earning a B.S. in Chemical Engineering.  He interned at a Georgia-Pacific Containerboard Mill for a year as an Environmental/Process Engineer, and then went on to earn an M.S. degree in Biological and Ecological Engineering studying life cycle effects of algae production for fuels and co-products. He also investigated rapid sand filtration as an algal dewatering process step and enzymatic degradation of, and simultaneous saccharification and ethanol production from, of algal cell biomass.

Kyle earned his PhD from the University of Tennessee, Knoxville conducting his thesis research within the BioEnergy Science Center at Oak Ridge National Laboratory.  Kyle focused on characterizing and engineering regulatory genes and related cellular redox in two candidate lignocellulolytic, ethanol-producing biocatalysts; Clostridium thermocellum and Caldicellulosiruptor bescii.  Basic redox metabolism was characterized in C. thermocellum, yielding an expanded view of redox metabolism in this organism, as well as a set of promising redox-active metabolic loci which were targeted in subsequent engineering for ethanol yield improvement done by others.  Single-gene deletion mutants of promising regulatory gene targets in C. bescii were generated and screened in bioprocessing-relevant conditions to assess the engineering potential of each gene target.  Deletion of a global redox sensing transcription factor (Rex) enabled C. bescii to synthesize 75% more ethanol and allowed us to comprehensively describe the unique Rex regulon in this organism.  A genotype-phenotype relationship was identified between the FapR local fatty acid biosynthesis repressor and this organism’s tolerance to elevated osmolarity conditions, a highly complex, bioprocess-limiting, and difficult-to-engineer trait.

Outside of the lab, Kyle enjoys running, reading, rock-climbing, spending time with family and friends, and becoming more familiar with his new Berkeley and California surroundings.

Yuexiao Shen joined Prof. Peidong Yang’s group at UC Berkeley as a postdoc in October, 2017. He finished his Ph.D. from the department of Chemical Engineering at Penn State in 2016. During his Ph.D., he worked on several projects in the interdisciplinary areas of chemical engineering, biology, chemistry and material science. He was focused on developing bioinspired membranes using membrane proteins that mimic the rapid and selective transport as seen in biological membranes. He extended to explore the potential of mimicking biological channels and lipids using supramolecular chemistry and investigating them using biophysical techniques. Yuexiao finished his bachelor and master degrees at Tsinghua University, where he studied environmental engineering. His academic accomplishments include several high-quality publications in journals such as PNAS, JACS and Journal of Membrane Science (JMS), and have been recognized by nationwide academic organizations with a number of very competitive awards. Yuexiao has already been offered an assistant professor position at Department of Civil, Environmental, and Construction Engineering at Texas Tech.
 

Currently Su is a postdoctoral researcher working with Professor Peidong Yang at University of California, Berkeley. His current research focuses on the bioelectrochemical CO2 fixation and N2 reduction. He received his Ph.D. degree in Chemistry on September 2017, with Professor Peidong Yang at University of California, Berkeley. During the Ph.D., he was awarded the MRS Graduate Student Award and the Chinese Government Award for Outstanding Self-financed Student Abroad. Su obtained his B.S. degree in Chemistry from University of Science and Technology of China on 2012, before joining the Peidong Yang Group as a graduate student.

Sunggeun Woo earned his B.S. and M.S. from Yonsei University in South Korea. During his B.S. and M.S. programs, he studied in the civil and environmental engineering department and he narrowed down his research focus to environmental biotechnology in his M.S. program, where he wrote fifteen papers for about two and a half years including five of them as the lead-author. At that time, the research topics were various in the field of environmental biotechnology including wastewater treatment systems, isolation and cultivation of microorganisms and harnessing renewable bio-diesel from microalgae. Based on the wide range of understandings, Sunggeun Woo joined the Criddle group for his Ph.D. program in September, 2012 focusing on the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) project. Sunggeun Woo participated in developing the CANDO process which produces a renewable energy, nitrous oxide (N2O), from nitrogen pollutants through microorganisms. During his Ph.D. program, Sunggeun Woo's main focus was to elucidate the microbial members that produce N2O and the metabolic pathways in them related to N2O and polyhydroxybutyrate (PHB) production. He graduated from Ph.D. program in January, 2018 and he is now continuing his research as a post-doctoral scholar in the Criddle group. His research is currently focusing on the recovery of renewable energy and materials from waste or wastewater using microorganisms. 
 

He is currently working as a Researcher with Professor Dr. Lance C. Seefeldt at Utah State University. He received his PhD in Organic Chemistry from Nankai University, Tianjin, China in 2007 and PhD in Biochemistry from Utah State University in 2013. After that, he continuously worked with Dr. Lance Seefeldt as postdoctoral fellow focusing on understanding nitrogenase mechanism with a broad range of interdisciplinary strategies, including biochemical, biophysical, and electrochemical methods. His research interests include metalloenzymes, small molecule activation, and relevant catalyst design and mechanistic studies.

Shuyang is a post-doctoral research associate working with Dr. Bruce Bugbee in the Crop Physiology Laboratory at the Utah State University. Her current research is focused on improving the understanding of whole-plant photosynthetic and morphological responses of food crops to light quality and quantity, primarily under artificial light in controlled environments. She received her PhD from the horticulture department at the University of Georgia in August 2017.