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a b s t r a c t 

Surrogate modeling is a useful tool for enabling uncertainty quantification (UQ) tasks that require many 

expensive model evaluations, as it replaces expensive high-fidelity models with cheap-to-evaluate surro- 

gates. This paper investigates sparse polynomial chaos and Kriging methods for surrogate modeling of 

first-principles models with probabilistic uncertainty in parameters and initial conditions. The surrogate 

modeling methods are demonstrated on a 2-dimensional population balance (2D-PB) model for batch 

cooling crystallization of ibuprofen with 20 uncertain parameters. Our analysis indicates that not only 

sparse polynomial chaos expansions are powerful for probabilistic UQ, but also the approximation accu- 

racy of Kriging surrogate models can be significantly improved when polynomial chaos expansions are 

used to describe their trend. A basis-adaptive least-angle-regression strategy is shown to be particularly 

useful for inducing sparsity in polynomial chaos expansions, allowing for dealing with problems with a 

relatively large number of uncertain inputs. The utility of sparse polynomial chaos- and Kriging-based 

surrogate models is illustrated for various forward and inverse UQ problems, including global sensitivity 

analysis as well as Bayesian and maximum a posteriori parameter estimation of the 2D-PB model, where 

massive savings in computational cost (up to 30,0 0 0-fold) are observed. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

High-fidelity models based on first principles are indispensable

ools for describing and understanding the complex behavior of

echnical systems. Nonetheless, first-principles models are gener-

lly subject to various sources of uncertainty. These include: 1)

odel structure uncertainty due to, for example, incomplete sys-

em knowledge in describing chemical reaction kinetics or physico-

hemical phenomena, e.g., nucleation, growth, and agglomeration

n particulate processes, 2) uncertainty in model parameters and/or

nitial conditions, e.g., uncertainty in kinetic parameters, and 3)

xperimental uncertainty, e.g., measurement noise. The existence

f uncertainty in model predictions, along with the intricate in-

erplay between the various sources of uncertainty, poses an im-

ortant challenge when applying high-fidelity models in decision-

upport tasks such as parameter estimation Renardy et al. (2018) ;

ermanto et al., 2008 , optimal experiment design Huan and Mar-

ouk (2013) ; Streif et al. (2014) , or optimal control Paulson and

esbah (2019) . Hence, it is crucial to quantify and analyze the im-
∗ Corresponding author. 
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act of model uncertainty on the predictions of quantities of in-

erest (QoIs), particularly to ensure compliance of processes and

roducts with safety and regulatory requirements. 

In recent years, computational methods for efficient uncertainty

uantification (UQ) have been the subject of intense research in

cience and engineering (e.g., see Najm (2009) ; Russi et al. (2010) ).

Q consists of the forward problem of propagating uncertain

odel inputs to predictions of QoIs as well as the inverse prob-

em of estimating unknown model inputs from measurements un-

er experimental uncertainties. There is a variety of approaches

o forward UQ. In deterministic perturbation methods, a model

s run using perturbed inputs around their assumed values to

haracterize how the QoIs are affected Elishakoff et al., 1994 ;

a and Braatz (2001) ; Gunawan et al. (2002) ; Sudret (2008) ;

im et al. (2013) . Alternatively, probabilistic UQ methods look to

btain probability distributions of QoIs by propagating the dis-

ribution of uncertain inputs through a system model. To this

nd, Monte Carlo-based (MC-based) methods are widely used for

ample-based approximation of the QoI distributions Nagy and

raatz (2007) . A useful feature of MC-based methods is that their

onvergence rate is independent of the number of uncertain in-

uts. That is, the convergence rate is O (1 / 
√ 

N s ) as the number of

https://doi.org/10.1016/j.compchemeng.2020.106814
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106814&domain=pdf
mailto:mesbah@berkeley.edu
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samples N s → ∞ Caflisch, 1998 . This is particularly advantageous

for UQ of complex dynamical systems with a high uncertainty di-

mension. However, the error convergence rate is slow, often requir-

ing a large number of samples to achieve acceptable accuracy. As

such, even for a moderate number of uncertain inputs (on the or-

der of 10), a large number of samples may be required to achieve

accurate uncertainty propagation, which can make the UQ tasks

computationally prohibitive. In MC-based UQ, this computational

challenge is further compounded with the cost of running expen-

sive high-fidelity models. 

This paper looks to demonstrate the utility of surrogate mod-

eling (also known as metamodeling) for fast UQ of complex sys-

tems. Surrogate models are computationally cheap-to-evaluate sur-

rogate representations of high-fidelity, expensive-to-run, models

Maceiczyk and Demello (2014) ; del Rio-Chanona et al. (2019) . The

key notion is to construct surrogates for high-fidelity models using

a limited amount of simulation training data, such that the high-

fidelity simulations are used as “black-box” (i.e., without any mod-

ification of the governing equations) Schenkendorf et al. (2017) ;

Luu Trung Duong et al. (2018) . Surrogate modeling has been shown

to be useful for performing expensive UQ tasks that require pre-

dicting QoIs for many random realizations of the uncertain model

inputs Zhang and Sahinidis, 2013 ; Sudret et al. (2017) . As such, sur-

rogate models are particularly advantageous for sample-based es-

timation of probability distribution of QoIs, or their statistical mo-

ments. 

In this work, we investigate sparse polynomial chaos Blatman,

Sudret, 2011 and Kriging Hu and Mahadevan (2016) methods for

surrogate modeling of first-principles models that are subject to

time-invariant, probabilistic uncertainty in parameters and ini-

tial conditions. The surrogate modeling methods are demonstrated

on a two-dimensional population balance (2D-PB) problem. PB

models are widely used for describing disperse, multi-phase sys-

tems in physics (e.g., statistical physics Smoluchowski (1916) ), in-

dustrial processes (e.g., crystallization, colloidal coalescence, re-

active precipitation Hulburt and Katz (1964) ; Randolph (1964) ;

Mesbah et al. (2011) ), and more recently medical research (e.g.,

cancer or leukemia progression Ramkrishna and Singh (2014) ;

Solsvik and Jakobsen (2015) ). The fact that dynamic PB models be-

come computationally excessively expensive in two or higher di-

mensions (e.g., when crystals are modeled as 2D objects, or when

external spatial coordinates are considered Ramkrishna (20 0 0) ;

Marchisio and Fox (2013) ; Sherer et al. (2007) ; Jakobsen (2008) ;

Marchisio and Fox (2013) ) warrants the use of surrogate modeling

for their fast UQ. 

We consider a 2D-PB model of batch cooling crystallization

of ibuprofen with probabilistic uncertainty in 20 parameters re-

lated to the kinetics of growth and dissolution, as well as to the

physico-chemical properties of the crystals Maggioni et al. (2017) ;

Crose et al. (2015) ; Ma and Roberts (2018) . We first demonstrate

the effectiveness of a basis-adaptive least-angle-regression strategy

Blatman, Sudret, 2011 for building sparse polynomial chaos surro-

gate models that can handle the relatively large number of un-

certain parameters in the 2D-PB model. We then explore polyno-

mial chaos-Kriging surrogate models, where polynomial chaos ex-

pansions are used as the trend (or mean) of the Kriging surrogate

model, leading to improved predictions of the global behavior of

QoIs compared to using generic polynomial trends. At the same

time, the variance of local Kriging predictions allows for quanti-

fying the uncertainty of predicted QoIs Schöbi and Sudret (2014) .

Finally, the utility of surrogate models is illustrated for a variety

of forward and inverse UQ problems, including global sensitivity

analysis as well as Bayesian and maximum a posteriori parameter

estimation of the 2D-PB model. 

The remainder of the paper is structured as follows.

Section 2 discusses the sparse polynomial chaos and Kriging
urrogate modeling methods. Section 3 introduces the 2D-PB

odel of the batch cooling crystallization process, followed by

erformance analysis of the different surrogate modeling methods.

ection 4 demonstrates the application of surrogate modeling

or fast probabilistic UQ. The paper is concluded by discussing

otential avenues for future research. 

. Overview of surrogate modeling methods 

Consider a computationally expensive, first-principles model M
hat describes a physical system and contains M uncertain in-

uts (i.e., model parameters and/or initial conditions), denoted by

= { ξ1 , ξ2 , . . . , ξM 

} , ξ ∈ IR 

M . Uncertainty in model parameters and

nitial conditions can be represented by a random variable � with

ome joint probability density function (pdf) f �, from which ran-

om realizations ξ are drawn. The support of this joint pdf is D �.

a remove”. The model M is a mapping in the form of M : IR 

M →
R 

N from the space of uncertain inputs to the space of N quantities

f interest (QoIs) predicted by the model. This mapping does not

ave to be known explicitly; hence, the model can also be a “black-

ox”. Let ˆ M denote an approximation of the mapping M and Y a

ector representing the QoIs 

 = M ( �) ≈ ˆ M ( �) . (1)

he approximation 

ˆ M is a so-called surrogate model that can be

sed to replace the original model M . We denote the predictions

f the surrogate model as ˆ Y , such that ˆ Y = Y + ε, where ε denotes

he error on the predictions. All surrogate modeling methods dis-

ussed in this paper have a representational form of ˆ M through

ontinuous functions, scaled by some coefficients. In order to esti-

ate the unknown coefficients of the surrogate models, it is imper-

tive to use training data, referred to as experimental design (ED).

here are many methods to generate the ED, such as Monte Carlo

MC) sampling, Latin Hypercube sampling (LHS) Shapiro (2003) , or

obol’ sequences Sobol’ And and Levitan (1999) . The experimen-

al design consists of N ed samples ˜ � = { ξ1 , ξ2 , . . . , ξN ed 
} with cor-

esponding responses ˜ Y = {M 

(
ξ1 

)
, M 

(
ξ2 

)
, . . . , M 

(
ξN ed 

)} . Note that

he quantity and quality of the training data directly affect the

uality of the surrogate model approximation. 

There are various approaches for estimating the coefficients of

urrogate models. We primarily focus on non-intrusive methods

hat have attained substantial attention recently Jones et al. (2013) ,

nd usually involve solving some nonlinear regression problem.

he advantage of non-intrusive approaches is that they do not rely

n implicit equations for the QoIs or any manipulations of the

quations, contrary to the intrusive Galerkin methods Ghanem and

panos (1991) . Once a surrogate model ˆ M is established, its ca-

ability to reproduce the responses of the original computational

odel M should be verified. Whenever the data are limited and

ust be used both for training and validation, one can resort to the

o-called “leave- k -out” cross-validation Goodfellow et al. (2016) .

he leave-one-out (LOO) cross validation error estimate, ε loo , is

nown to prevent overfitting and is generally preferred in statis-

ical learning models. The LOO error is defined as 

loo = 

∑ N ed 

i =1 

(
M 

(
ξ

i 
)

− ˆ M 

\ i 
(
ξ

i 
))2 

∑ N ed 

i =1 

(
M 

(
ξ

i 
)

− μ
˜ Y 

)2 
, (2)

here ˆ M 

\ i denotes the surrogate model constructed without tak-

ng the i th experimental design realization into account and μ
˜ Y 

is

he empirical mean of the training set. 

The generalization capability of a surrogate model, however,

ay be overestimated when relying only on the LOO cross-

alidation error. Therefore, we introduce another crucial perfor-

ance assessment metric, the validation error, ε , based on N 
val val 



G. Makrygiorgos, G.M. Maggioni and A. Mesbah / Computers and Chemical Engineering 138 (2020) 106814 3 

s  

v

ε

w  

c  

e  

m  

g  

e  

a  

r  

n  

r  

r  

M  

t  

g  

o  

n  

s

2

 

s  

o  

S  

W  

b  

s

Y

T  

p  

c  

t  

i  

fi  

w  

a

E

w  

n  

t  

u  

c  

c  

t  

a  

t  

a  

h  

i  

M  

i  

u  

t  

u  

p  

t  

P  

p  

o  

c

 

t  

c

Y

T  

w  

t  

s  

A  (
 

l

ŷ
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amples different from those used to generate the training set. The

alidation error is defined as 

v al = 

(
N v al − 1 

N v al 

)∑ N v al 

i =1 

(
M 

(
ξ

i 
)

− ˆ M 

(
ξ

i 
))2 

∑ N v al 

i =1 

(
M 

(
ξ

i 
)

− μ
˜ Y v al 

)2 
, (3) 

here μ
˜ Y v al 

is the empirical mean of the validation samples. Typi-

ally, N val should be a few orders of magnitude larger than N ed to

nsure a reliable assessment of the generalization of the surrogate

odel. To summarize, the surrogate model coefficient estimation

enerally relies heavily on the LOO cross-validation error, as it is

stimated based on the training data. If a validation set is avail-

ble, it can be used to ensure the predictive capability of the sur-

ogate model. In this work, we use random samples from the origi-

al, expensive-to-evaluate model to validate the results of the sur-

ogate models. In a real application, however, cross-validation er-

or could be used to estimate the accuracy of the surrogate model.

oreover, although we extensively sample the original model in

his work one could also use a much lower number of samples to

et similar information about the validation error at the expense

f loss in the validation error accuracy. We now present the poly-

omial chaos- and Kriging-based surrogate modeling methods con-

idered in this work. 

.1. Polynomial chaos expansions 

Polynomial chaos (PC) has been established as a popular

urrogate modeling method for estimation and optimal control

f uncertain nonlinear systems (e.g., Nagy and Braatz (2007) ;

udret (2008) ; Chaffart and Ricardez-Sandoval (2017) ;

ang et al. (2018) ). Polynomial chaos expansions (PCEs) are

ased on the assumption that a finite-variance QoI can be repre-

ented by an infinite series Xiu and Em Karniadakis (2002) 

 = 

∑ 

a ∈ N M 
y a �a ( �) . (4) 

he basis functions �α( �) in the expansion of Y are multivariate

olynomials (orthogonal with respect to f �) and y a are the coeffi-

ients of the basis functions. N is the set of Natural numbers and

he multi-index α is an M-dimensional vector in N . In this form,

.e., an infinite series representation, an infinite number of coef-

cients is retrieved. The orthogonality condition holds over D �,

hich is the support of the joint distribution f �, and is defined

s 

 { �α( �) �β( �) } = 

∫ 
D �

�α

(
ξ
)
�β

(
ξ
)

f �
(
ξ
)
d ξ = δαβ , ∀ α, β ∈ N 

M , 

(5) 

here δαβ denotes the Kronecker delta. Constructing the orthogo-

al basis �α( �) relies on the form of the joint pdf of the uncer-

ain inputs f �. Expression (5) represents the tensor product of M

nivariate polynomials that are orthonormal with respect to their

orresponding marginal density f ξi 
. For several continuous and dis-

rete probability distributions, optimal series convergence is es-

ablished based on the Wiener-Askey scheme Xiu and Em Karni-

dakis (2002) . Note that one may choose an arbitrary family of or-

hogonal basis functions for representing a given uncertain input

nd the PCE will still be convergent. The Wiener-Askey scheme,

owever, provides the optimal L 2 -convergence rate with increas-

ng polynomial order by the Martin-Cameron theorem Cameron,

artin, 1947 ; Xiu and Karniadakis (2002) . For arbitrary probabil-

ty distributions, the orthogonal polynomials can be constructed

sing the three-term recurrence procedure Gautschi (1982) . When

he joint probability density f � does not have an independent cop-

la (i.e., the uncertain inputs are statistically dependent) an iso-

robabilistic transformation, such as the Rosenblatt transformation,
hat preserves the pdf of the uncertainty elements can be used

aulson and Mesbah (2018a) . In this work, we focus on uncertain

arameters whose joint pdf has an independent copula and whose

ptimal univariate polynomial representation possesses an analyti-

al expression based on the Wiener-Askey scheme. 

For practical reasons, the expansion (4) must be truncated up

o a finite order. The truncated polynomial chaos expansion can be

ast as follows 

ˆ 
 = 

ˆ M 

PC = 

∑ 

a ∈ A 
y a �a ( �) = y T �( �) . (6) 

he order of the expansion is described by the multi-index a ∈ A ,

here A ⊂ N 

M represents the set of the multi-indices kept in the

runcated expansion. The truncation scheme aims to limit the pos-

ible infinite expansion to a series of maximum order p , so that

 

M,p = { a : | a | ≤ p} and thus the cardinality of A is equal to P =
M+ p 

p 

)
. The coefficients y of (6) can be determined by solving a

east-squares problem 

 

 = argmin 

y ∈ R P 
E 

[ (
M ( �) − y T �( �) 

)2 
] 
, (7) 

hich seeks to minimize the discrepancy between predictions of

he surrogate model ̂ M 

PC and the model M . When an ED is avail-

ble, the coefficient estimation problem can be solved analytically

y ordinary least squares (OLS) as 

ˆ 
 = 

(
A 

T A 

)−1 
A 

T 
˜ Y , (8) 

here matrix A is the so-called experimental or design ma-

rix whose elements are defined as A i j = � j 

(
ξi 

)
, i = 1 , . . . , N ed , j =

 , . . . , P , i.e., the basis functions evaluated on the ED points. Ac-

ounting for more uncertain inputs in (6) drastically increases the

ardinality of A and, therefore, the number of coefficients to be es-

imated. A similar challenge arises when increasing the surrogate

odel complexity by adding higher order terms to the expansion.

o address these challenges, we look to introduce sparsity in the

xpansion (6) . First, the basic truncation scheme can be replaced

y the hyperbolic truncation scheme, also known as the q-norm

cheme, 

 

M,p,q = { a ∈ A 

M,p : || a || q ≤ p} , || a || q = 

( 

M ∑ 

i =1 

a q 
i 

) 

1 
q 

. (9)

he main idea behind the hyperbolic truncation scheme is that the

igh-order univariate polynomials for each single variable should

ppear in the expansion, but high-order interaction terms are

mitted. This follows the sparsity-of-effects principle, indicating

hat only low-order interactions in the uncertain inputs are rele-

ant . For q = 1 the full basis is retained, while terms disappear

rom the expansion as q decreases. Second, once a basis has been

onstructed using the q-norm scheme, further sparsity effects can

e introduced by modifying the coefficient estimation problem.

his is achieved by adding a regularization term || y || 1 = 

∑ 

a ∈A y a ,
hich yields low-rank solutions and leads to the regularized esti-

ation problem Hastie et al. (2015) 

 

 = argmin 

y ∈ R P 
E 

[ (
M ( �) − y T �( �) 

)2 
] 

+ λ ‖ y ‖ 1 . (10)

 key aspect in solving (10) is the proper choice of the regulariza-

ion parameter λ ≥ 0, which affects the number of non-zero coeffi-

ients retained in the expansion (6) . The penalized problem can be

fficiently solved with the least-angle-regression (LAR) algorithm

fron et al. (2004) . Briefly, LAR seeks to identify the polynomials

( �) (known as “regressors” in the statistical literature) with the

reatest impact on the model responses among a large set of can-

idates based on a q -norm adaptive scheme Blatman, Sudret, 2011 .

he convergence criterion of the LAR algorithm relies on ε (see
loo 
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Fig. 1. Sparse polynomial chaos with adaptive order and basis truncation. 
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(3) ). We refer to PCEs constructed by using a hyperbolic trunca-

tion scheme and the LAR algorithm as sparse PC (sPC) expansions.

Fig. 1 shows the main procedure through which the sPC expansion

is constructed. 

2.2. Kriging 

Kriging, also known as Gaussian process Rasmussen and

Williams (2006) , is a stochastic interpolation method that was ini-

tially adopted in spatial statistics Cressie (1990) . In Kriging, the

predictions of the model M are approximated as realizations of a

Gaussian process, so that the surrogate model structure takes the

form 

 

 = 

̂ M 

KG 
(
ξ
)

= β
T 

q 

(
ξ
)

+ σ 2 Z 
(
ξ
)
. (11)

The first term in (11) describes the trend of the Gaussian process,

which can assume different functional forms. The trend is anal-

ogous to the multivariate basis functions in polynomial chaos, as

it attempts to characterize the global behavior of the model re-

sponse as a function of the uncertain inputs. A general choice for

the trend consists of polynomial functions. The second term in

(11) , Z ( ξ), is a stationary Gaussian process (zero mean, unit vari-

ance) that describes the variance of the surrogate model predic-

tions. Similar to polynomial chaos, the polynomial order in the

trend can be defined through the multi-indices that belong to the

set A 

M,p = { a : | a | ≤ p} . Thus, the general form of the polynomial

trend can be given as 

β
T 

q 

(
ξ
)

= 

∑ 

α∈A M,p 

βa q a 
(
ξ
)
, q a 

(
ξ
)

= 

M ∏ 

i =1 

ξ a i . (12)

The coefficients β as well as the variance σ 2 should be estimated

using the available experimental design. The zero-mean Gaussian

process Z ( ξ) is determined by the so-called kernel function that de-

fines a pairwise correlation between input samples based on their

mutual distance R 
(
ξ, ξ

′ ) = R 
(| ξ − ξ

′ |; θ). The idea behind the use of

a kernel (or auto-correlation) function is that sample points that

are “close” (in the absolute distance sense) should produce close
utputs. Hence, the kernel function provides a measure of similar-

ty. The hyperparameters θ of the kernel function should be esti-

ated along with β and θ. In the present study, we have chosen

 kernel function belonging to the class of separable correlation

unctions Lataniotis et al. (2015) 

 

(
ξ, ξ

′ ; θ
)

= 

M ∏ 

i =1 

R 

(
ξi , ξ

′ 
i ; θi 

)
(13)

nd particularly the Matern correlation function 

 

(
ξ, ξ

′ ; θ
)

= 

M ∏ 

i =1 

1 

2 

v −1 �( v ) 

(√ 

2 v 
| ξi − ξ ′ 

i 
| 

θi 

)v 

K v 

(√ 

2 v 
| ξi − ξ ′ 

i 
| 

θi 

)
, 

(14)

here v denotes the degree or shape parameter, � is the Euler

amma function, and K is the modified Bessel function of second

ind Rasmussen and Williams (2006) . Although the Matern corre-

ation function is a popular choice, other alternatives exist, such as

inear, exponential, and Gaussian kernels Moustapha et al., 2018 . 

We now discuss the calibration of a Kriging surrogate model,

.e., the procedure of estimating the hyperparameters. Since Krig-

ng is a stochastic interpolation method, the underlying Gaussian

rocess assumption is fundamentally related to the data used to

rain the surrogate model. Consider an ED of N ed points ˜ � =
 ξ1 , ξ2 , . . . , ξN ed 

} with responses ˜ Y = {M ( ξ1 ) , M ( ξ2 ) , ..., M ( ξN ed 
) } .

et ˆ Y denote the predictions of a Kriging surrogate model on ran-

om “unseen” uncertainty realizations ˆ ξ. Then, the vector { ̂  Y , ˜ Y }
as a joint Gaussian probability density function. We define r ( ξ)

s the cross-correlation vector that relates unseen realizations

to the observations from the ED through the kernel function

 i 

(
ξ
)

= R 
(
ξ, ξi ; θ

)
, i = 1 , 2 , . . . , N ed . Let R ( ξ, θ) be the correlation

atrix between the ED samples whose terms are defined as R i j =
 

(
ξi , ξ j ; θ

)
, i, j = 1 , 2 , . . . , N ed . The trend coefficients and variance

xplicitly depend on the hyperparameters ˆ θ through the following

xpressions (̂ θ
)

= 

(
Q 

T R 

−1 Q 

)−1 
Q R 

−1 ˜ Y , (15)

2 
(̂ θ

)
= 

1 

N 

(˜ Y − Q β
)T 

R 

−1 
(˜ Y − Q β

)
, (16)

here Q denotes the information matrix whose elements corre-

pond to the Kriging trend evaluated at the training data so that

 ij = q j ( ξi ) , i = 1 , . . . , N ed , j = 1 , . . . , p. The hyperparameters ˆ θ can

e estimated through a maximum likelihood (ML) problem of the

orm Marrel et al. (2008) 

 = argmin 

θ

[ 
1 

N 

(˜ Y − Q β
)T 

R 

−1 
(˜ Y − Q β

)
( det ( R ) ) 

1 /N ed 

] 
. (17)

lternatively, the hyperparameters can be estimated by solving a

ross-validation problem Bachoc, 2013 . Various approaches exist

or solving the ML problem (17) . An effective approach is the co-

ariance matrix adaptation-evolution Scheme (CMAES), which be-

ongs to the class of global optimization methods Hansen and Os-

ermeier (2001) . 

Once the hyperparameters and, subsequently, the Kriging surro-

ate model parameters β and σ 2 are estimated, the prediction of

odel responses, assumed to obey a Gaussian distribution, attains

 mean and variance 

̂ Y = q 

(
ξ
)T 

β + r 
(
ξ
)T 

R 

−1 
(˜ Y − Q β

)
(18)

2 ̂ Y 
= σ 2 ˜ Y 

( 

1 − 〈 q 

(
ξ
)T 

r 
(
ξ
)T 〉 

[
0 Q 

T 
]−1 

[ 

q 

(
ξ
)( ) ] ) 

. (19)
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.3. Polynomial Chaos-Kriging 

Recently, Schöbi and Sudret (2014) proposed combining polyno-

ial chaos and Kriging to improve the global approximation capa-

ility of PCEs by leveraging the local interpolation scheme of Krig-

ng. The sparse polynomial chaos-Kriging (sPCK) surrogate model

as a similar form to that of Kriging, with the notable difference

eing the generic polynomial trend is substituted by a PCE 

ˆ 
 = 

ˆ M 

sPCK 
(
ξ
)

= 

∑ 

a ∈ A 
y a �a 

(
ξ
)

+ σ 2 Z 
(
ξ
)
. (20)

he model coefficients estimation procedure is very similar to that

f Kriging. There are two strategies for estimating the polyno-

ial chaos trend coefficients as well as the Kriging kernel hyper-

arameters the sequential and optimal methods Schöbi and Su-

ret (2014) . In both methods, the set of multi-indices A is deter-

ined by (9) through applying the LAR algorithm to increase the

parsity of the expansion. Sequential PCK commences by estimat-

ng the optimal basis set for the trend independently. Then, the

CE coefficients are treated as the β parameters in Kriging, which

re estimated by solving the ML problem (17) . On the other hand,

ptimal PCK solves (17) for the hyperparameters at each step of

he LAR algorithm, i.e., each time new regressors are entered into

he expansion. sPCK has received less attention than sPC in the lit-

rature, but examples of application of sPCK can be found in the

orks of Weinmeister et al. (2018) and Makrygiorgos et al. (2020) .

. Case study: Surrogate modeling of a 2D population balance 

odel 

.1. 2D Population balance model 

.1.1. General formulation of population balances 

Consider a system consisting of many individual entities that

nteract with one another and with the surrounding environment,

sually a continuous medium. Describing the evolution of each en-

ity individually is computationally prohibitive, whereas modeling

he entities collectively as an ensemble is more convenient. Addi-

ionally, such a representation often provides a deeper insight into

he main physical features and properties of the system as a whole.

n population balance (PB) modeling, the constitutive entities are

alled particles , while the ensemble itself population . Here, we as-

ume that not only the medium is continuous, but also the pop-

lation itself, f , is mathematically described by a continuous func-

ion. f represents the number distribution (or density) of particles

nd depends on time, t , on the position in the physical space (i.e.,

he external coordinates x) , and on a set of relevant properties

i.e., the internal coordinates L) . The choice of the internal coor-

inates depends on what the particles represent; in crystallization

roblems they usually represent the crystal characteristic lengths,

hile in cell population modeling the age or a specific genetic

rait. Each type of coordinates is defined over a sub-domain, �t ,

x , and �L , respectively. The domain � of f is given by the joint

pace obtained from the Cartesian product � = �t × �x × �L . In

his work, all coordinates are continuous variables. Note that the

opulation density f is not a proper probability distribution be-

ause its integral over � is not unit, but yields the total number

f particles per unit mass (or volume). However, f can be given an

ntuitive probabilistic interpretation upon normalization. The evo-

ution of f can be thought of as a motion in �. During this mo-

ion, the number of particles may change due to sinks / sources

hat consume / produce new entities, respectively. If the motion is

urely convective with velocity U in �x and G in �L , the conserva-

ion equation, usually known as population balance equation (PBE)

amkrishna (20 0 0) , takes the form 

∂ f (t, x , L ) + ∇ x · (U (t, x , L , z ) f (t, x , L )) + ∇ L · (G (t, x , L , z ) f (t, x , L )) 

∂t 
= S(t, x , L , z ) , (21) 

here z is the vector of the relevant system states (e.g., tempera-

ure, concentration, pH) and S is the function representing the sink

nd source terms. The solution of (21) requires appropriate initial

nd boundary conditions. It is apparent that it is akin to the con-

ervation equations of mass, thermal energy, momentum, or elec-

ric charge. 

.1.2. Benchmark case: 2D-PB model of batch cooling crystallization 

We now present the PB model of batch cooling crystallization

f ibuprofen (i.e., solute) in ethanol (i.e., solvent). We assume that

he suspension within the vessel is well-mixed at any time and

hat breakage and agglomeration do not occur in the system. With-

ut loss of generality, we also assume that the process starts at

 0 = 0 , i.e. �t = R 

+ , and that at t 0 the suspension is at the ther-

odynamic equilibrium for the given initial conditions. 

The needle-like crystals are modelled as square-based prisms,

hose geometry is fully described by two characteristic lengths,

 1 ∈ R 

+ for the base and L 2 ∈ R 

+ for the height. The characteristic

engths are used as internal coordinates, i.e., L = [ L 1 , L 2 ] 
T , hence

L = R 

+ × R 

+ . The crystal population constitutes a 2D distribu-

ion, called particle size and shape distribution (PSSD). Note that the

bove definition of �L assumes that the smallest possible crystal

s a (virtual) particle of null size in both L 1 and L 2 . For each char-

cteristic length, the rate of change along the internal coordinates,

 , is given by the growth rates (for supersaturated systems) or by

he dissolution rates (for undersaturated systems). We assume that

 depends on thermodynamic variables, but not on L . Because the

rystals do not agglomerate or break, the only source term is rep-

esented by nucleation, J . This total nucleation rate is given by the

dditive contribution of primary and secondary nucleation, with

ates J p and J s , respectively. Under the above assumption, the PBE

21) simplifies to 

∂ f (t, L 1 , L 2 ) 

∂t 
+ G 1 (z ) 

∂ f (t, L 1 , L 2 ) 

∂L 1 
+ G 2 ( z ) 

∂ f ( t, L 1 , L 2 ) 

∂L 2 

= (J p (z ) + J s (z )) δ(L 1 ) δ(L 2 ) , (22) 

ith initial and boundary conditions 

f (0 , L 1 , L 2 ) = f 0 (L 1 , L 2 ) (23) 

f (t, 0 , L 2 ) = 0 (24) 

f (t, L 1 , 0) = 0 . (25) 

he initial PSSD, f 0 , is modeled either as a (truncated) normal dis-

ribution (seeded processes), or as an identically null distribution

unseeded processes). The PBE (22) is coupled with a material bal-

nce for the solute present in the solution 

dc 

dt 
= −ρc k v 

dφ21 

dt 
, c(0) = c 0 , (26)

here c is the concentration, c 0 is the initial concentration, ρc is

he crystal density, k v is the volume shape factor (equal to 1 for

 square-based prism), and φ21 is the cross-moment of the PSSD.

he general definition of the cross-moment ( ij ) is 

i j (t) = 

∫ + ∞ 

0 

∫ + ∞ 

0 

L i 1 L 
j 
2 

f (t, L 1 , L 2 ) dL 1 dL 2 . (27)

he elements of the state vector z in (22) are the temperature,

 , the supersaturation, S , and the system volume, V . The thermo-

ynamic driving force of the crystallization phenomena is the su-

ersaturation, S . For mildly non-ideal solutions and for compounds

hose activity coefficients are independent of the concentration,
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Table 1 

The list of 20 uncertain parameters in the 2D-PB model (22) –(32) , which corre- 

spond to the kinetics of growth and dissolution and the physicochemical properties 

of crystals. The uncertain parameters are assumed to follow a uniform distribution 

on the support [ l b , u b ]. 

ξ p l b u b 

ξ 1 α0 1.16 1.74 

ξ 2 α1 1.2 1.8 

ξ 3 α2 2.416 3.624 

ξ 4 b 0 0.8 1.2 

ξ 5 b 1 1.6 2.4 

ξ 6 b 2 1.2 1.8 

ξ 7 g 1,0 0.07 0.13 

ξ 8 g 1,1 1.04 1.56 

ξ 9 g 1,2 3.04 4.56 

ξ 10 g 2,0 4.2 7.8 

ξ 11 g 2,1 0.96 1.44 

ξ 12 g 2,2 4.8 7.2 

ξ 13 d 1,0 4.8 7.2 

ξ 14 d 1,1 1.28 1.92 

ξ 15 d 1,2 1.6 2.4 

ξ 16 d 2,0 4.8 7.2 

ξ 17 d 2,1 1.2 1.8 

ξ 18 d 2,2 1.6 2.4 

ξ 19 ρc 0.91 1.69 

ξ 20 k v 0.5497 1.021 
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the supersaturation is given by the ratio between the solute con-

centration and its solubility, c s , at the temperature T 

S(T ) = 

c 

c s (T ) 
, (28)

where c s is given by the van’t Hoff expression 

c s (T ) = k 1 exp 

(
−k 2 

T 

)
. (29)

The expression for each characteristic length j = 1 , 2 of the

growth rate ( S ≥ 1) follows the birth and spread mechanisms

Lindenberg and Mazzotti (2009) , while that of the dissolution rate

is empirical of the form Mersmann (2001) 

G j (S, T ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

g j, 0 exp 

(
−g j, 1 

T 

)
(S − 1) 1 / 6 exp 

(
− g j, 2 

T 2 ln S 

)
S > 1 

d j, 0 exp 

(
−d j, 1 

T 

)
(1 − S) d j, 2 S < 1 . 

(30)

The primary nucleation is defined according to the classical nucle-

ation theory Debenedetti (1996) ; Kashchiev (20 0 0) 

J p (S, T ) = a 0 exp 

(
−a 1 

T 

)
S exp 

(
− a 2 

T 3 ln 

2 
S 

)
, (31)

which holds for S > 1, otherwise J p = 0 . Similarly, for S > 1,

the secondary nucleation is given by the empirical law

Mersmann (2001) 

J s (S, T ) = b 0 ε
b 1 m 

b 2 
s Ḡ 

b 3 = bm 

b 2 
s Ḡ 

b 3 , (32)

where Ḡ is an average growth rate Salvatori and Mazzotti (2017) ,

and ε is the turbulence intensity. For S < 1, J s = 0 . The last equal-

ity on the right hand side of (32) , with b = b 0 ε
b 1 , is obtained by

assuming a constant ε. 

There is no analytical solution for the PBE (22) . Among the

various numerical methods for solving PBEs Mesbah et al. (2009) ,

high-order finite volume methods are particularly suited for high-

resolution solution of population balances, are computationally

efficient in the case of pure growth and nucleation phenom-

ena, and easily generalize to n-dimensional PBEs LeVeque (2002) ;

Gunawan et al. (2004) ; Qamar et al. (2009) . Thus, we used high-

resolution finite volume methods in this work to discretize the

PSSD along the 2D internal coordinates. The numerical oscilla-

tions induced by this method are suppressed by using a Van Leer

flux-limiting function LeVeque (2002) . The discretization along

the internal coordinates transforms the PBE into a set of ordi-

nary differential equations along the temporal coordinate, solved

with explicit time integration and subject to the CFL condition

Gunawan et al. (2004) . Numerical solution of the 2D-PB model

(22) - (32) is relatively expensive. A typical run of the model for a

simulation time of one hour takes approximately 15 to 20 s. This

can lead to excessive computation times in UQ tasks that require

many (i.e., on the order of 10 5 to 10 6 ) model evaluations. 

Here, we consider 20 uncertain parameters in the 2D-PB model

(22) –(32) , as listed in Table 1 (i.e., M = 20 ). The uncertain pa-

rameters are assumed to follow independent uniform distributions

ξ ∼ U( l b , u b ) , where l b and u b denote the lower and upper bounds

of the distribution support. The nominal values of each parame-

ter are ξmean = 

u b + l b 
2 . The joint probability density has an indepen-

dent copula. The uncertain parameters and QoIs are scaled so that

they attain values on the order of O 

(
10 −1 − 1 

)
. Let ˆ ξi denote the

unscaled uncertainties, which can be written as ˆ ξi = o i ξi . The sup-

ports [ l b , u b ] of the marginals are defined symmetrically for each

uncertain parameter and set to ± 20% or ± 30% of the corre-

sponding mean value. 
The QoIs consist of the solute concentration c , the cross-

oment φ21 , and the average crystal lengths ̃  L 1 and ̃

 L 2 (i.e., N = 4 ).

he characteristic quantities that non-dimensionalize and scale the

oI are defined as the nominal solution values at the final time

tep. The nominal solution is obtained for the realization that cor-

esponds to the mean values of the parameters. The QoIs are sam-

led at n t = 15 discrete time steps over a fixed simulation time

orizon. The simulation time is set to t f = 3600 s and the solution

s available on 10 0 0 equally-spaced time steps through interpola-

ion from the solution with a time-adaptive integrator. The n t sam-

ling times are 

 = { 396 , 648 , 936 , 1080 , 1368 , 1440 , 1872 , 2160 , 2340 , 

2556 , 2700 , 2880 , 3060 , 3276 , 3600 } s . 
or each QoI at each sampling time, we construct a separate sur-

ogate model, so the dynamics are captured through n t × N map-

ings of the form 

ˆ M : IR 

M → IR . 

.2. Performance of surrogate models 

In this section, we compare the performance of the different

urrogate modeling methods presented in Section 2 . The specific

hoices for constructing the surrogate models are as follows. To

uild the polynomial chaos (PC) surrogate model, we choose an

daptive order scheme with varying orders from 1 to 3, where

he coefficients are estimated using ordinary least squares (OLS).

ote that using fourth order polynomials in the full PCE would

ncrease the cardinality of A by an order of magnitude, leading

o out-of-memory computations. A similar basis-adaptive approach

s taken for building the Kriging (KG) surrogate models. The or-

er of the trend p in (11) varies from 1 to 2, the surrogate mod-

ls of both orders are computed and the surrogate model with

he least leave-one-out error is stored. Usual choices for the shape

actor of the Matern kernel function are v = 3 / 2 or v = 5 / 2 ; we

hoose the latter. Sparse polynomial chaos (sPC) and sparse PC-

riging (sPCK) offer greater flexibility in selecting the polynomial

asis order, which is varied from 1 to 15. In fact, due to sparsity,

 plethora of terms are dropped. For the sPCK model, we employ

he sequential PCK procedure Schöbi and Sudret (2014) . Moreover,

n both sPCK and sPC, the truncation norm q is varied from 0.7

o 0.8. Note that in the PC-based surrogate models, the univari-
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Fig. 2. Time required to train the sPC, PC, sPCK, and KG surrogate models in rela- 

tion to the experimental design size N ed . The total time t corresponds to the time 

needed to construct the surrogate models for the four quantities of interest at the 

desired times (i.e., n t × N). 
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Fig. 3. Validation errors for the polynomial chaos surrogate models for ̃  L 1 and ̃  L 2 
at sampling time t = 2556 s. Symbols correspond to the errors computed for each 

ED size while the lines represent the leading order fit. Triangles/solid lines corre- 

spond to ̃  L 1 , while circles/dashed lines correspond to ̃  L 2 . The estimations of sPC are 

denoted with red, while PC with green. A leading order fit of the error is super- 

imposed for the validation errors. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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te basis functions are chosen as Legendre polynomials, which are

he optimal choice for the uniform distributions of the uncertain

arameters. The surrogate model construction is performed using

QLab in MATLAB Marelli and Sudret (2014) . For the error conver-

ence study and performance assessment of each surrogate mod-

ling method, 12 experimental designs are used with sizes N ed =
 80 , 120 , 160 , 200 , 260 , 320 , 400 , 500 , 600 , 700 , 800 , 1000 } . The ex-

erimental designs are constructed using the Latin Hypercube

ampling (LHS) method by defining an initial set of points and se-

uentially enriching it until the maximum design size is reached. 

First, we compare the computation time required to train each

urrogate model. Fig. 2 shows the total time to construct the PC,

PC, sPCK, and KG surrogate models for all QoIs at the desired

imes (i.e., n t × N surrogate models in total for each method) as

 function of ED size. We compare all methods by allocating ap-

roximately the same time to construct the surrogate models. The

C expansions are the least time consuming to build. This can be

ttributed to the fact that the coefficient estimation via OLS has an

nalytical solution, where the crucial step is the inversion of the

xperimental design matrix. Generally, it is more expensive to train

PCK than sPC surrogate models: sPCK requires both the LAR basis

daption step and the hyperparameter optimization, while sPC re-

ies only on the former. Kriging requires approximately the same

mount of time as sPC, given that linear and quadratic trends are

sed in (12) . We observed that adding a cubic trend would dra-

atically increase the time required for refining the Kriging hyper-

aramters, but did not improve significantly the accuracy of the

urrogate model. 

Next, we discuss the error convergence analysis. For brevity,

nly the QoIs ̃  L 1 and ̃

 L 2 (i.e., the average crystal lengths in 2D) at

ime 2556 s are considered for this analysis. We begin by inspect-

ng the validation errors computed by (3) as a function of the ED

ize. The validation set consists of N v al = 20 0 0 0 points. To stan-

ardize the error analysis, let us assume that the error scales as

v al = cN 

n 
ed 

, where n is the leading scaling order LeVeque (2007) .

n the logarithmic scale, the scaling equation takes the form 

 og 10 ( εv al ) = l og 10 ( c ) + nl og 10 ( N ed ) , (33)

hich shows a linear relationship between the logarithm of the

rror and that of the ED size. 
Fig. 3 shows the validation errors for the PC and sPC surro-

ate models as a function of the ED size for the two QoIs in the

ogarithmic scale. As expected, Fig. 3 indicates that the PC surro-

ate models perform much worse than sPC, with validation errors

hat are approximately two orders of magnitude higher. This sug-

ests that the model responses cannot be captured reliably with

ubic polynomials in the PC models. On the other hand, sPC have a

arger representational capability due to sparsity effects, as higher

rder terms appear in the expansions. In addition, the cardinality

f the basis becomes excessively large in the PC models, even for

uadratic or cubic expansions, so that the available training data

re less than the number of the coefficients to be estimated. LAR

lleviates this issue in sPC by entering at most N ed terms in the

xpansion Blatman, Sudret (2013) . 

On the other hand, Fig. 4 suggests that, as the ED size increases,

he log10-validation error of sPCK and KG keeps decreasing and

or large ED it is well below O ( −3 ) . Nevertheless, using orthogo-

al polynomials as the trend improves the predictions by approxi-

ately an order of magnitude for both QoIs ( ̃  L 1 and ̃

 L 2 ). This is due

o not only the optimal basis representation in the trend, but also

he fact that the polynomial trend in the sPCK surrogate model

20) allows for a higher order approximation. 

Overall, sPC and sPCK surrogate models exhibit comparable per-

ormance in terms of their predictive capability. This implies that

here do not exist significant local variations in the 2D-PB model

nder consideration, which a high-order polynomial approximation

annot capture. Generally, it is expected that the use of a larger

raining set would result in more accurate surrogate models. How-

ver, the error convergence results ( Figs. 3 and 4 ) reveal that for

ome experimental designs, especially for small sized EDs, there is

n irregular non-monotonic behavior of the validation error as a

unction of the ED size, especially for the Kriging model. This non-

onotonic behavior can be due to the specific training procedure

n each case. In fact, the validation errors are implicit functions

f the quality of the ED points, the quality of the validation set,

nd the hyperparameter optimization of the surrogate models. A

imilar non-monotonic behavior in error convergence was also ob-

erved in Yamazaki (2015) ; Harenberg et al. (2019) . 
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Fig. 4. Validation errors for the Kriging-based surrogate models for ̃  L 1 and ̃  L 2 at 

sampling time t = 2556 s. Symbols correspond to the errors computed for each ED 

size, while the lines represent the leading order fit. Triangles/solid lines correspond 

to ̃  L 1 , while circles/dashed lines correspond to ̃  L 2 . The estimations of KG are de- 

noted with orange, while sPCK with blue. A leading order fit is superimposed for 

the validation errors. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. 5. Validation and LOO error convergence plot for ̃  L 1 at sampling time t = 2556 

s. PCK errors are denoted by blue color and sPCE errors by red color. Square sym- 

bols correspond to the validation error and circles to the LOO error. A leading order 

fit of the error is superimposed for both validation and LOO errors. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 6. Parity plots for the KG (orange symbols) and PC (green symbols) surrogate 

models for different experimental design sizes. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 
Furthermore, we perform an estimation of the leading scale or-

der of the validation errors as a function of the ED size. The com-

puted leading orders are the average of the predictions of the two

QoIs. It is evident from Fig. 3 that the PC models exhibit discon-

tinuity in the error, so that the convergence rate cannot be esti-

mated by a single line over all considered ED sizes. Nevertheless,

PC models exhibit a convergence rate of approximately O ( −0 . 6 )
for larger EDs, which is the lowest among all the surrogate mod-

els. The KG surrogate model shows the second slowest convergence

with a rate of O ( −1 . 7 ) . The leading orders for the sPC and sPCK

are O ( −2 . 18 ) and O ( −2 . 25 ) , respectively. This suggests that these

surrogate models show a nearly quadratic convergence rate in re-

lation to the ED size. The previous error analysis was based on

the validation error, assuming that there is enough data in order

to construct a validation set. The ε loo error, which is available di-

rectly from the training data, is another potential candidate for es-

timating the predictive capabilities of the various surrogate mod-

els. Fig. 5 shows the cross-validation, leave-one-out error ε loo , and

the validation error εv al for the QoI ̃  L 1 for the sPC and sPCK surro-

gate models. As can be seen, the LOO error follows the same trend

as the validation error, so that in the absence of a validation set

it can potentially be used to estimate the accuracy of the surro-

gate models. However, the LOO errors tend to be smaller than the

validation errors. 

The performance of surrogate models is also assessed by exam-

ining the parity plots, which can provide insights into the error

sources, i.e., identifying where inconsistencies between the origi-

nal model M and the surrogate model ˆ M lie. For brevity, we only

present the parity plots for one QoI, that is, the average length
 L 1 at t = 2556 s. Fig. 6 shows the parity plots for the KG and PC

surrogate models. As expected from the error convergence results,

when the size of the ED increases, the surrogate model predictions

will become more accurate. In addition, for surrogate models with

worse predictive capability, the surrogate model predictions devi-

ate from the y = x line. Given a limited amount of training data,

this can be attributed to the fact that the adopted training set may

be richer in samples that are closer to the nominal values of the

uncertain inputs and, thus, lack samples for model responses that

are less likely to occur. 

article.) 
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Fig. 7. Parity plots for the sPCK (blue symbols) and sPC (red symbols) surrogate 

models for different experimental design sizes. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 7 shows the parity plots for the sPC and sPCK surrogate

odels. Both surrogate models provide accurate predictions even

or the smallest ED, which is expected from their low valida-

ion. These results highlight the usefulness of leveraging sparsity

n dealing with the relatively high uncertainty dimension of the

D-PB model. Generally, sPCK and sPC surrogate models are ex-

ected to have comparable performance, as was also reported in

chöbi and Sudret (2014) . Whether the auto-correlation function

mproves the sPC accuracy is a matter of the complexity of the un-

ertainty propagation due to the model at hand, which is generally

ot known a priori . Moreover, sPCK provides the confidence inter-

als of the surrogate model predictions that can be a useful feature

n many UQ applications. 

. Surrogate models for uncertainty quantification 

In this section, the application of the sparse polynomial chaos

nd polynomial chaos-Kriging surrogate models is demonstrated

or fast solution of various forward and inverse uncertainty quan-

ification problems for the 2D-PB model. This includes global sen-

itivity analysis as well as Bayesian and maximum a posteriori pa-

ameter estimation. 
.1. Global sensitivity analysis 

Surrogate models are invaluable tools for UQ problems that

ely on Monte Carlo (MC) sampling where a significant number

f model evaluations is often necessary. One such application is

lobal sensitivity analysis (GSA). In contrast to local sensitivity

nalysis that typically involves computing gradients of QoIs around

 nominal value, GSA accounts for the entire domain of uncertain

nputs to estimate the sensitivity of QoIs. 

First, we introduce the Sobol’ indices Sobol (1993) ;

udret (2008) . For simplicity of notation, we assume uniform

ncertain inputs with support D � = [ 0 , 1 ] 
M . The model response

s assumed to take the following form, which is known as the

nalysis of variance (ANOVA) representation 

 

(
ξ
)

= M 0 + 

M ∑ 

i =1 

M i ( ξi ) + 

M ∑ 

1 ≤i ≤ j≤M 

M i j 

(
ξi j 

)
+ . . . + M 1 , 2 , ... ,M 

(
ξ
)
, 

(34) 

here M 0 is the expected value of the response M 

(
ξ
)

over the

nput space, while the integrals of the summands over their vari-

bles obey 

 1 

0 

M i 1 , ... ,i s 

(
ξi 1 , . . . , ξi s 

)
dξik = 0 , 1 ≤ k ≤ s. (35)

he ordered set 1 ≤ i 1 < . . . < i s ≤ M, s = 1 , . . . , M represents a sub-

et of the uncertain inputs. For functions integrable over D �,

hose input variables are independent, the expansion (34) can be

hown to be unique Sobol (1993) . The constant and summation

erms in (34) are computed recursively as 

 0 = 

∫ 
D �

M 

(
ξ
)
d ξ (36) 

 i ( ξi ) = 

∫ 1 

0 

· · ·
∫ 1 

0 

M 

(
ξ
)
d ξ∼i − M 0 (37)

 i j 

(
ξi , ξ j 

)
= 

∫ 1 

0 

· · ·
∫ 1 

0 

M 

(
ξ
)
d ξ∼(i j) − M 0 − M i ( ξi ) − M j 

(
ξ j 

)
, 

(38) 

here ξ∼i = { ξ1 , ξ2 , . . . , ξi −1 , ξi +1 , . . . , ξM 

} , i.e., it represents the set

here the i th variable is excluded. Accordingly, the total variance

f M ( ξ) , denoted by D , is given by 

 = 

∫ 
D �

M 

2 
(
ξ
)
d ξ − M 

2 
0 . (39)

e also define the partial variance that represents the variance of

he response of M when a subset of the uncertainties is perturbed.

he partial variance D i 1 , ... ,i s 
is computed as 

D i 1 , ... ,i s = 

∫ 1 

0 

· · ·
∫ 1 

0 

M 

2 
i 1 , ... ,i s 

(
ξi 1 , . . . , ξi s 

)
d ξi 1 . . . d ξi s , 

1 ≤ i 1 ≤ . . . ≤ i s ≤ M, s = 1 , . . . , M. (40) 

sing the definitions of partial and total sensitivities, the sensitiv-

ty measures can now be defined as 

 i 1 , ... ,i s = 

D i 1 , ... ,i s 

D 

. (41) 

he sensitivity measures represent the contribution of a subset of

ncertain parameters { ξi 1 
, . . . , ξi s } to the total variance of a QoI.

ere, we focus on the total Sobol’ indices. The total Sobol’ index of

n uncertain input ξ i is denoted by S T 
i 

and defined as 

 

T 
i = 

∑ 

{ i 1 , ... ,i s }⊃i 

S i 1 , ... ,i s . (42) 
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Fig. 8. Dynamic global sensitivity analysis of the four quantities of interest at four different sampling times. Each row represents a quantity of interest and each column a 

different sam pling time. The sensitivity indices of the uncertain parameters are indicated with different colors. The index for ξ 7 is denoted by red, ξ 8 by green, ξ 10 by blue, 

ξ 11 by orange, ξ 19 by purple, and ξ 20 by magenta. Starting from top, the rows represent the concentration c , the cross moment φ21 , the average length on coordinate 1 ( L 1 ), 

and the average length on coordinate 2 ( L 2 ). The y-axis values represent the total Sobol’ index for each uncertain parameter. The Sobol’ indices for the other 14 uncertain 

parameters are practically zero, so they are not visible in any subplot. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Thus, the estimation of the Sobol index S T 
i 

requires the computa-

tion of all partial sensitivites for the subsets that involve the input

ξ i . Given that the Sobol’ indices of all parameters sum to 1, the

Sobol index can be obtained from 

S T i = 1 − S ∼i = 1 − S v , v = { 1 , . . . , i − 1 , i + 1 , . . . , M} . (43)

In general, there is no closed-form solution for the multivariate

integrals in (39) and (40) . Instead, these expressions are usually

approximated by MC simulations with a large number of samples.

In this work, we use (43) for the computation of the total Sobol’

indices, where the S v term is approximated using the Janon esti-

mator Janon et al. (2014) , which is also a sample-based method.

Here, we use the sPCK surrogate model trained with 10 0 0 samples

for fast sampling of the system responses for all QoIs at the differ-

ent sampling times. The dynamic Sobol’ indices for the 20 uncer-

tain parameters in the 2D-PB model are shown in Fig. 8 . As can be

seen, only 6 out of 20 parameters have a significant impact on the

QoIs. The most influential parameters include the two kinetic pa-

rameters associated with the growth along L 1 , which are ξ7 = g 1 , 0 
and ξ8 = g 1 , 1 , two kinetic parameters associated with the growth

along L 2 , which are ξ10 = g 2 , 0 and ξ11 = g 2 , 1 , the crystal density,

ξ19 = ρc , and the shape factor, ξ20 = k v . At each time instant, the

different QoIs have a unique sensitivity to the uncertain param-

eters. In addition, the relative importance of the parameters for a

given QoI changes with time. For example, the solute concentration

c is sensitive primarily to the parameters of growth along L 1 at the

early stages of crystallization, but becomes increasingly sensitive to

the growth parameters along L 2 at later times. Moreover, c is sig-

nificantly sensitive to variations in the shape factor, k v , and crys-

tal density, ρc . The cross-moment φ exhibits a similar trend as
21 
he solute concentration; however, it is not sensitive to the shape

actor and the crystal density until later stages of crystallization.

astly, the parameters pertaining to the dissolution have negligi-

le Sobol’ indices. This is expected since the crystallization occurs

n the domain where S > 1, thus no dissolution occurs. As for the

verage crystal lengths, ̃  L 1 and ̃

 L 2 are affected by different mecha-

isms. As expected, the former is more sensitive to perturbations

f parameters related to growth along L 1 , while ̃  L 2 to perturbations

f parameters related to growth along L 2 . We note that the out-

omes of the GSA are dependent on the process input variables.

or example, changing the cooling rate of crystallization could af-

ect the impact of the uncertain parameters on the QoIs. 

.2. Bayesian estimation of model parameters 

we focus on the inverse UQ problem that aims at estimat-

ng the parameters that affect the QoIs. Bayesian parameter infer-

nce attempts to narrow down the uncertainty in these parame-

ers, under some assumption on both prior knowledge about them

nd given available experimental measurements. We aim to esti-

ate a subset of the uncertain inputs, i.e., the “important” param-

ters based on the GSA, which define a new vector denoted by
n = { ξ7 , ξ8 , ξ10 , ξ11 , ξ19 , ξ20 } . 

A new sPCK surrogate model that has ξn as the stochastic input

s trained using an ED of 250 samples. A validation error below

target = 5 × 10 −3 is reached for all QoIs, so no further enrichment

f the ED is needed. For this demonstration, due to the fact that

e do not have actual experimental data, we generate data for

arameter estimation using a “true” computational model whose

esponses, ξ
n 
true , are corrupted by state-dependent Gaussian mea-
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Algorithm 1 The algorithm for sequential Monte Carlo Liu and 

Chen, 1998 ; Chopin (2002) . 

0. Initialization : SMC algorithm is initialized by selecting N p 

particles. N. Set j = 1 and use the prior f �
(
ξ
)

to generate samples 

{ ξ} N p 
i =1 

and set uniform weights w i = 

1 
N p 

1. Reweighting : Based on the likelihood for each realization from 

the N p particles, update the weights as w i ← w i · w j 

(
ξi 

)
, where 

w j 

(
ξi 

)
∝ f D j | �

(
d j | ξi 

)
2. Resampling : To retain a threshold of effective particles, resam- 

ple { ξi , w i } N p i =1 
to obtain particles with equal weights { ξr 

i , 
1 

N p 
} N p 

i =1 

3. Iteration : If j < j f continue to the next sampling time by 

setting { ξi , w i } N p i =1 
← { ξr 

i , 
1 

N p 
} N p 

i =1 
, set j ← j + 1 and return to step 1. 
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t  
urement noise. We denote as d w 

i 
the measurement of quantity w

t time step t i . The available data for the analysis are given, 

d c i = c 
(
t i , ξ

n 
true 

)
+ E c i , i ∈ { 1 , . . . , n t } 

 

φ21 

i 
= φ21 

(
t i , ξ

n 
true 

)
+ E 

φ21 

i 
, i ∈ { 1 , . . . , n t } 

d ̃
 L 1 

i 
= ̃

 L 1 
(
t i , ξ

n 
true 

)
+ E ̃

 L 1 
i 

, i ∈ { 1 , . . . , n t } 
d ̃

 L 2 
i 

= ̃

 L 2 
(
t i , ξ

n 
true 

)
+ E ̃

 L 2 
i 

, i ∈ { 1 , . . . , n t } . (44) 

hus, at every sampling point, the available data is denoted by

 i = { d c 
i 
, d 

φ21 
i 

, d ̃
 L 1 

i 
, d ̃

 L 2 
i 

} and the corresponding error vector as E i =
 E c 

i 
, E 

φ21 
i 

, E ̃
 L 1 

i 
, E ̃

 L 2 
i 

} . We further define D = { D 1 , D 2 , . . . , D 15 } as the

atrix containing all the measurements and E = { E 1 , E 2 , . . . , E 15 }
s the errors matrix. We model the measurement error as a Gaus-

ian variable with zero mean and state-dependent standard devi-

tion, which is 5% of the measured value; E w 

i 
∼ N 

(
0 , σ 2 

w,i 

)
with

w,i ( �) = 0 . 05 | w ( t i , �) | . At the core of Bayesian inference prob-

em lies Bayes theorem that describes how the posterior density

unction is estimated given the experimental data. Bayes theorem

s formulated as Kennedy and O’hagan (2001) 

f �| D 
(
ξ| d 

)
= 

f D | �
(
d | ξ) f �

(
ξ
)

f D ( d ) 
, (45) 

here f �| D ( ξ| d ) denotes the posterior density of the uncertain pa-

ameters after observing the experimental data; The prior den-

ity is denoted by f �( ξ); the term f D | �( d | ξ) is the likelihood func-

ion; and f D ( d ) is the so-called evidence or marginal likelihood.

he priors of the uncertain imputs for this problem follow the

ame uniform distributions as those presented in Section 3 The

ikelihood function is represented by a Gaussian distribution

aue et al. (2013) 

f D | �
(
d | ξ) = 

n t ∏ 

i =1 

N ∏ 

w =1 

1 √ 

2 πσ 2 
w,i 

(
ξ
)exp 

( 

−
(
d w 

i 
− w 

(
t i ; ξ

))2 

2 σ 2 
w,i 

(
ξ
) ) 

. (46) 

The computation of the posterior can be expensive, as closed-

orm solutions exist only in few specific cases. Therefore, we re-

ort to sequental Monte Carlo (SMC), a sample-based method that

eeks to generate samples from the unknown posterior function

iu and Chen, 1998 ; Chopin (2002) In dynamic estimation prob-

ems. the SMC method works in an iterative fashion, as summa-

ized in Algorithm 1 . We approximate the distributions using N p 

articles. At each iteration, the likelihood function has to be sam-

led for each particle in the simulation to obtain the updated

eight factors. Thus, the computational model M has to be eval-

ated N p times, which adds a vast computational challenge to the

roblem. In fact, the first-principles model M needs on average 15

 for a complete time integration For N p = 10 6 , the model evalua-
ion would require about 173 days or roughly 2.5 × 10 5 min. How-

ver, using the sPCK surrogate model, this computation is vastly

ccelerated. We sample the likelihood function at each j t iteration.

he N p computations at each iteration, including the rest of the

MC procedure, result in an approximately total time of 10 min

or the posterior density to be estimated. The time needed to gen-

rate training data for the 250 samples is approximately an hour.

he training of the sPCK surrogate model using 250 training data

oints lasts approximately 65 min. This translates to appriximately

0,0 0 0-fold savings in computation time. 

The subplots in the diagonal of Fig. 9 depict the estimates of the

osterior densities (blue), where the prior densities (green, flat) are

uperimposed. Within the same plots, the red lines represent the

rue value of the parameters while the black lines the mean of the

osteriors. As can be seen, the posterior densities are, in general,

arrower than the priors. Thus, taking the measurements into ac-

ount greatly reduces the uncertainty of the prior beliefs. However,

his Bayesian inference cannot provide the same level of accuracy

or estimation of all uncertain inputs. For instance, the support of

arameters ξ 7 , ξ 8 , ξ 10 , ξ 11 is less than half of the corresponding

upport of the priors, while this is not true for ξ 19 and ξ 20 . The

ost identifiable parameter is ξ 8 and the least identifiable one

s ξ 20 This observation is consistent with the Sobol’ indices pre-

ented earlier. Overall, ξ 7 , ξ 8 , ξ 10 , ξ 11 attain high Sobol’ index val-

es across the measured QoIs. while ξ 19 , ξ 20 mainly affect only

ne QoI, the concentration c . This suggests the QoI distributions

re mainly affected by the parameters that have the greatest influ-

nce on them, reflected by the Sobol’ indices. Hence, it is expected

hat it is those parameters that are more identifiable. 

In addition, obtaining the posterior density for the uncertain

arameters allows for a full characterization of the predicted dis-

ributions. Fig. 10 shows the approximate distribution of the QoIs

arginalized over the parameters uncertainty. The prior distribu-

ions f Y (green) represent the probability density functions (pdfs)

f the model QoIs marginalized over the prior parameter distri-

utions. The posterior distributions (blue), f Y|D . are updates of the

rior predictive distributions based on the available data. The pos-

erior distributions are obtained by marginalization over the pos-

erior parameters distributions. Similar to the prior and posterior

ehavior for the uncertain parameters, the posterior distribution of

oIs are much narrower their prior distributions. predictive. In fact,

hen the true QoIs and the mean of the posterior distributions are

uperimposed on the plot, they may become indistinguishable. 

.3. Maximum a posteriori parameter estimation 

For this application, we focus on the solution of an optimization

roblem where surrogate models are employed for accelerating the

bjective function evaluations. The problem involves estimation of

he 20 uncertain parameters via estimating the mean of the poste-

ior distribution as the solution of a maximum a posteriori (MAP)

roblem. The MAP problem that takes the form 

ˆ 
MAP ( d ) = argmax 

ξ∈ D �
f �| D 

(
ξ| d 

)
= argmax 

ξ∈ D �
f D | �

(
d | ξ) f �

(
ξ
)
. (47)

his yields the MAP point estimates of the parameters. We re-visit

he original uncertainty inputs space with the 20 parameters and

e assume that the uncertainties follow a Gaussian distribution

o that ξG ∼ N 

(
μG , σ

2 
G 

)
. The mean of the Gaussian distribution is

he same as in the case of uniform priors, i.e., the midpoint of the

ach respective range, and the standard deviation σ G,i is assumed

o be 15% of the mean for all parameters except ξG 
7 

, ξG 
10 

, ξG 
19 

, ξG 
20 

or which σ G,i is 25% of the corresponding mean. The covariance

atrix for the uncertain inputs is considered to be diagonal and is

enoted by C ξ . The prior in (47) is utilized as a regularization term

hat adds stability to the solution. The likelihood is assumed to be
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Fig. 9. Prior and posterior distribution of the uncertain parameters. The posteriors are denoted with blue, while the priors with green. The diagonal elements represent 

the prior (flat) and posterior marginal densities. The red lines represent the true value of the parameters, while the black lines the mean of the posterior. The off-diagonal 

elements represent the 2D projections of the joint probability density. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 10. Time variation of prior and posterior distribution of QoIs i.e., the model responses marginalized over the prior and posterior parameter distributions, respectively. 

Each column represents a different QoI and each row a different sampling time step, with descending order. The prior distributions are denoted by green and the posterior 

by blue. The black line represents the mean of the posterior distribution (point estimate). Some marginals posteriors are so narrow that are practically indistinguishable from 

the point estimates. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

w

ξ̃  

T  

C  
Gaussian with a time-averaged state dependent variance, so that

each diagonal element in the covariance matrix for the responses

is C Y ( w, w ) = 0 . 05 | 
∑ n t 

i =1 
w i 

n t 
| , where w = 1 , . . . , N and corresponds to

the QoIs. 

Under the Gaussian assumptions, the MAP optimization prob-

lem is converted to a regularized weighted least-squares problem,

s  
hich is defined as 

 

MAP ( d ) = argmin 

ξ∈ D �
− log 

(
f D | �

(
d | ξ)) − log 

(
f �

(
ξ
))

. (48)

he log-likelihood function in (48) includes the inverse of both

 ξ and C Y . If the diagonal of those matrices contains extremely

mall values, then they are ill-conditioned and their inversion may
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o  

F
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t

e inaccurate. This can happen if the unscaled parameters and

odel outputs are used. Since the priors have been considered to

e Gaussian here, we re-construct the surrogate models. As sPCK

nd sPC surrogate models perform similarly (as shown by the er-

or convergence plots Figs. 3 and 4 ), we employ the latter for this

roblem. The main motivation behind this choice is that the QoI
ig. 11. Estimates of the posterior Gaussian distributions of the 20 uncertain parameters

riors (green) and posteriors (blue), while the off-diagonal sub-plots show the projected 

lements, where only the green Gaussian distribution is shown, the posterior coincides e

o colour in this figure legend, the reader is referred to the web version of this article.) 
valuations with sPC is faster than with sPCK, which involves the

nversion of the correlation matrix at each evaluation. The estima-

ion problem is solved using the CMAES method of \ texttt{UQLab}.

he solution of the optimization problem is performed in approx-

mately 3.2 min. We also look to analyze the reliability and errors

f these results. This is achieved by computing confidence inter-
 estimated via MAP. The diagonal elements represent the marginal densities of the 

MAP estimates (pair-wise) along with the 95% confidence intervals. At the diagonal 

xactly with the prior and this it is not visible. (For interpretation of the references 
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vals around the estimations, as shown in Fig. 11 . We employ the

Laplace approximation of the log posterior − log 
(

f D | �
(
d | ξ)) with

a quadratic function from a second order Taylor expansion around

the predicted mean. The ellipses drawn around the predicted mean

are the 95% confidence intervals based on the chi-squared distribu-

tion. Press et al. (1992) . Overall, the predicted MAP estimates are

within the desired confidence intervals. The most important con-

clusion that can be drawn based on Fig. 11 is that the sensitivities

of QoIs once again dictate which parameters are expected to be

identifiable under the observation of the specific data. The juxta-

posed prior and posterior distributions reveal that the optimizer

has differentiated the prior and posterior distributions of the pa-

rameters with non-negligible Sobol’ indices, which are the 6 pa-

rameters used in the Bayesian estimation problem. The other pa-

rameters have the same priors and posteriors, as expected from the

prior regularization term that exists in the objective function. Fur-

thermore, the MAP estimates do not reduce the uncertainty of the

priors significantly, even on the identifiable parameters, especially

when compared to the results of Bayesian inference. Nevertheless,

the MAP estimation can be useful as a first step towards more so-

phisticated Bayesian inference. 

5. Conclusions and future work 

Surrogate modeling has shown great promise for substitut-

ing expensive, high-fidelity models with cheap-to-evaluate sur-

rogates. Surrogate models can be especially useful for perform-

ing simulation and decision-making tasks that, for example, hinge

on the solution of models consisting of partial differential equa-

tions Tripathy and Bilionis (2018) , large-scale biochemical reac-

tion network models Renardy et al. (2018) , genome-scale models

Kumar and Budman (2017) ; Paulson et al. (2019a) , and closed-loop

control simulations Paulson and Mesbah (2018b) . As such, surro-

gate models facilitate fast uncertainty quantification in a variety of

forward propagation and estimation problems. This paper focused

on polynomial chaos-based and Kriging-based surrogate modeling

methods, investigating UQ of a two-dimensional population bal-

ance model for batch cooling crystallization of ibuprofen under pa-

rameter uncertainty. 

It is well-known that the truncation order of polynomial chaos

expansions can grow very quickly with the increasing order of ba-

sis functions and a larger number of uncertain inputs, severely

limiting the utility of polynomial chaos for UQ. Our analysis

showed that inducing sparsity through basis-adaptive least-angles-

regression is particularly effective for circumventing the curse of

dimensionality of polynomial chaos expansions, while systemati-

cally accounting for the availability of a limited set of training data.

Furthermore, it was shown that representing the trend term of

Kriging surrogate models by sparse polynomial chaos expansions

(i.e., sparse polynomial chaos-Kriging) not only improves the global

approximation accuracy of Kriging, but also enables quantification

of the local uncertainty of surrogate model predictions. Finally,

we demonstrated that sparse polynomial chaos- and Kriging-based

surrogate models can lead to significant computational speedups in

UQ tasks such as Bayesian parameter estimation. Thus, the meth-

ods investigated in this work hold promise for creating new op-

portunities for probabilistic uncertainty quantification of complex

dynamical systems. 

Nonetheless, there are several important open challenges in

polynomial chaos-based surrogate modeling that warrant fur-

ther research. In this work, we adopted a time-frozen surro-

gate modeling approach Mai and Sudret (2017) , where a sepa-

rate surrogate model is constructed independently at each time

instant for each QoI. This time-frozen approach can however

fail in surrogate modeling of more complex dynamical systems,

for example, systems with oscillatory response Mai and Su-
ret (2017) Gerritsma et al. (2010) . To this end, several ap-

roaches have recently been investigated for constructing time-

ependent surrogate models, including stochastic time wrapping

ai and Sudret (2017) and nonlinear autoregressive exogenous

odels Spiridonakos and Chatzi (2015) . 

Finally, improved sampling for training of surrogate models

s an area of active research. Sampling methods such as Monte

arlo or Latin Hypercube are commonly used to generate train-

ng data, but do not follow any optimality measure. Optimal

ampling methods can minimize the size of experimental de-

ign needed for surrogate model training, thus significantly en-

ancing the computational efficiency of building surrogate mod-

ls (e.g., Hampton and Doostan (2015) ; Paulson et al., 2017, 2019 ;

insbeck and Nowak (2015) ). Most optimal sampling methods are

owever tailored to specific surrogate modeling techniques, or suf-

er from limited scalability to large uncertainty dimensions, war-

anting further research in this area. 
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