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a b s t r a c t 

Scenario-based model predictive control (MPC) methods introduce recourse into optimal control and can 

thus reduce the conservativeness inherent to open-loop robust MPC. However, the uncertainty scenar- 

ios are often generated offline using worst-case uncertainty bounds quantified a priori , limiting the po- 

tential gains in control performance. This paper presents a learning-based multistage MPC (msMPC) for 

systems with hard-to-model dynamics and time-varying plant-model mismatch. Gaussian Processes (GP) 

are used to learn state- and input-dependent plant-model mismatch in real-time and accordingly adapt 

the scenario tree online. Due to the increased computational complexity associated with incorporating 

the GP predictions into the optimal control problem, the learning-based msMPC (LB-msMPC) law is ap- 

proximated by a deep neural network (DNN) that is cheap-to-evaluate online and has a small memory 

footprint, which makes it suitable for embedded applications. In addition, we present a novel algorithm 

for training the DNN-based controller that uses a GP description of the plant-model mismatch to generate 

closed-loop simulation data, which ensures the LB-msMPC law is evaluated in regions of the state space 

most relevant to closed-loop operation. The proposed LB-msMPC strategy is demonstrated on a cold at- 

mospheric plasma jet with applications in (bio)materials processing. The simulation results indicate the 

promise of the approximate LB-msMPC strategy for control of hard-to-model systems with fast dynamics 

on millisecond timescales. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Model predictive control (MPC) is widely used for the con- 

rol of multivariable and constrained systems ( Mayne, 2014 ). The 

erformance of MPC hinges on the availability of accurate and 

nexpensive system models. Learning-based MPC (LB-MPC) aims 

o leverage machine learning and statistical learning tools to en- 

ble control of systems with complex and hard-to-model dynam- 

cs, where purely model-based control approaches exhibit limited 

ffectiveness ( Aswani et al., 2013 ). LB-MPC has shown promise in 

arious control applications, such as pH neutralization processes 

 Kocijan et al., 2004 ), gas-liquid separation processes ( Likar and 

ocijan, 2007 ), non-thermal plasma processing ( Bonzanini and 

esbah, 2020 ), robot path tracking ( Ostafew et al., 2014 ), and un-

anned vehicles ( Hewing et al., 2019 ). 

However, using machine learning algorithms to augment – or 

ven completely substitute – the model does not inherently equip 
∗ Corresponding author. 
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he MPC controller with the ability to systematically account for 

ncertainty Bemporad and Morari (1999) ; Mesbah (2016, 2018) . 

n particular, the presence of uncertainties may lead to undesired 

onstraint violation and/or MPC performance deterioration. A pop- 

lar approach to robustify MPC involves representing system un- 

ertainties using a scenario tree in the optimal control problem 

 Bernardini and Bemporad, 2009 ). Scenario-based MPC methods, 

uch as multi-stage MPC (msMPC) ( Lucia et al., 2013 ), can mitigate 

he inherent conservativeness associated with robust MPC by in- 

roducing recourse into the optimal control problem. However, an 

mportant drawback of msMPC is the fact that scenarios are gener- 

ted based on offline-characterized worst-case uncertainty descrip- 

ions that must hold throughout the entire state space. This ne- 

lects the potential time-varying and/or state-dependent nature of 

he uncertainty that, when unaccounted for, can lead to significant 

osses in control performance. 

Adaptive approaches to msMPC have recently been proposed to 

mprove knowledge about an uncertain system via online estima- 

ion of uncertainties and accordingly adapting the scenario tree 

 Subramanian et al., 2015; Holtorf et al., 2019; Thangavel et al., 

020 ). Although various disturbance estimators have been used 
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or scenario tree adaptation, they typically assume either a spe- 

ific structure of the model, or a generic constant disturbance pre- 

iction, which may not capture structural plant-model mismatch 

dequately. Alternatively, state- and input-dependent descriptions 

f system uncertainty have shown to be useful for capturing the 

ime-varying and state-dependent nature of structural model un- 

ertainty (i.e., plant-model mismatch) ( Bonzanini et al., 2020; Bon- 

anini and Mesbah, 2020; Hewing et al., 2019; Ostafew et al., 2014; 

oloperto et al., 2018 ). 

In this paper, we present a learning-based msMPC (LB-msMPC) 

trategy for hard-to-model dynamic systems in the presence of 

lant-model mismatch. The first contribution of this work is a 

earning-based paradigm for msMPC with adaptive scenario tree 

hereby Gaussian Processes (GP) ( Rasmussen and Williams, 2006 ) 

re used to learn a data-driven description of the plant-model mis- 

atch. The main advantages of using a GP uncertainty model are 

ts ability to: (i) learn a description of any arbitrary functions as a 

esult of its non-parametric form and (ii) quantify the uncertainty 

n the prediction of the plant-model mismatch that can be incor- 

orated into robust MPC schemes. For online adaptation of the sce- 

ario tree, the GP is embedded into the predictions of the msMPC 

uch that the scenarios (derived from either random sampling or 

ome quadrature rule) depend on the current and predicted state 

nd input values. Although online adaptation of the scenario tree 

n msMPC has been implemented using recursive Bayesian weight- 

ng ( Krishnamoorthy et al., 2019b ) and sigma point-based uncer- 

ainty propagation ( Thangavel et al., 2020 ), this is the first work 

hat uses GP to perform scenario tree adaptation. 

However, GP-based adaption of the scenario tree further in- 

reases the computational complexity of msMPC that can make 

t impractical to implement in real-time, especially for systems 

ith fast dynamics. This is mainly because the number of deci- 

ion variables grows exponentially with the prediction horizon due 

o the branching of the scenario tree in addition to the calcula- 

ion of each scenario requiring a Cholesky decomposition of the 

ovariance matrix predicted by the GP uncertainty model. Since 

he LB-msMPC problem cannot be solved exactly offline using ex- 

licit/multiparametric MPC methods ( Bemporad et al., 2002 ) due 

o the nonlinear nature of the GP, we propose to approximate the 

mplicit LB-msMPC law in terms of a cheap-to-evaluate control law. 

here has recently been increased interest in approximate MPC 

trategies to yield an explicit expression for the controller using 

ata generated from offline solution of an MPC problem. Previ- 

us works have used various function approximators, such as poly- 

omials ( Chakrabarty et al., 2016 ), radial basis functions ( Csek ̋o 

t al., 2015 ), and deep neural networks (DNNs) ( Parisini and Zop- 

oli, 1995; Karg and Lucia, 2018; Chen et al., 2018 ) to derive ap-

roximate control laws. In particular, DNNs have been shown to 

e useful for approximating MPC laws due to their ability to cap- 

ure the piecewise nature of the control law ( Karg and Lucia, 2018; 

onzanini et al., 2020a; Paulson and Mesbah, 2020 ). The second 

ontribution of this work is a novel framework for training fast ap- 

roximate LB-msMPC using DNNs. In contrast to existing approxi- 

ate MPC approaches that base their training on open-loop data, 

e demonstrate the advantages of training the DNN with closed- 

oop data, which yields an effective approximation of the control 

aw in state-space regions relevant to closed-loop control. In addi- 

ion, we show how Bayesian optimization methods ( Shahriari et al., 

016 ) can be used to systematically and efficiently select hyperpa- 

ameters of the DNN. 

The proposed LB-msMPC strategy is demonstrated on a sim- 

lation case study of an atmospheric pressure plasma jet (APPJ) 

ith prototypical applications in (bio)materials processing and 

lasma medicine. We explore the tradeoff between computational 

ost and performance for different update rules of the GP uncer- 

ainty model. Specifically, we compare LB-msMPC, whereby the 
2 
P is propagated in prediction, and a so-called adaptive msMPC, 

hereby the GP is updated at each sampling time and thus is ex- 

ernal to the controller. In addition, we demonstrate the effects of 

raining data and hyperparameter optimization on the performance 

f the DNN-based approximate control laws. 

The structure of this paper is as follows. The problem formula- 

ion and standard worst-case msMPC are summarized in Section 2 . 

ection 3 presents the proposed LB-msMPC strategy and discusses 

arious schemes for scenario selection. This is followed by the ap- 

roximation of LB-msMPC using DNNs in Section 4 , with focus on 

enerating closed-loop training data and hyperparameter selection 

sing Bayesian optimization. In Section 5 , the proposed methods 

re demonstrated on a simulation case study of a cold atmospheric 

lasma jet with prototypical applications in plasma medicine and 

iomaterials processing ( Gidon et al., 2018 ). We benchmark the 

roposed LB-msMPC strategy against worst-case msMPC for con- 

rol of nonlinear plasma dose delivery, and demonstrate that the 

pproximate LB-msMPC law can be evaluated in the millisecond 

ange. 

. Preliminaries 

.1. Problem formulation 

Consider an uncertain discrete-time nonlinear system of the 

orm 

 

+ = f (x, u ) + w, (1) 

here x ∈ R 

n x is the current state, x + is the successor state at the

ext time instant, u ∈ R 

n u is the control input, and w ∈ R 

n w is a

ector of unknown disturbances. The disturbance sequence { w k } k ≥0 

s assumed to be a realization of a stochastic process that satisfies 

he following assumption. 

ssumption 1. w k for k = 0 , 1 , . . . are independent and identically

istributed (i.i.d.) random variables with known probability density 

unction p w 

(w ) and bounded support W ⊂ R 

n w . 

Assumption 1 is made initially to derive a theoretically con- 

istent scenario-based approximation to an underlying closed-loop 

tochastic MPC problem, which will be relaxed in the subsequent 

ections. The system (1) is subject to state and input constraints 

iven by 

x, u ) ∈ Z, (2) 

here Z = { (x, u ) : h (x, u ) ≤ 0 } is a known set specified by the

onstraint function h : R 

n x × R 

n u → R 

n h . Note that (2) implicitly de-

nes a set of state constraints 

 = Proj 
R n x (Z) , (3) 

here Proj X (S) = { x ∈ X : ∃ y ∈ Y s.t. (x, y ) ∈ S} is the orthogonal

rojection of the set S ⊂ X × Y onto the space X . We aim to solve

he following finite-horizon closed-loop MPC problem under un- 

ertainty 

in 

�
J(x, �) := E w 

{ 

N−1 ∑ 

k =0 

� (x k , πk (x k )) + � f (x N ) 

} 

, (4a) 

.t. x k +1 = f (x k , πk (x k )) + w k , (4b) 

x k , πk (x k )) ∈ Z, (4c) 

 0 = x, ∀ w ∈ W 

N , ∀ k ∈ { 0 , . . . , N − 1 } , (4d)

here the decision variables are defined by the control policy � = 

 π0 (·) , . . . , πN−1 (·) } that is composed of a sequence of control laws 
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Fig. 1. Two equivalent scenario tree representations for s = N r = 2 . 
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k : R 

n x → R 

n u over the prediction horizon N > 0 . The objective

unction is defined in terms of the expected value E w 

{·} with re- 

pect to the disturbance sequence w = (w 0 , . . . , w N−1 ) . � (x, u ) and

 f (x N ) denote the stage cost and terminal cost, respectively. The 

bjective function directly takes advantage of distributional in- 

ormation of the disturbances. The constraints, however, are en- 

orced with respect to the worst-case realization of the distur- 

ances. In principle, the hard constraints (2) could be replaced 

ith chance constraints ; however, this would complicate the analy- 

is when Assumption 1 is relaxed due to the fact that the p w 

could

ary with time or the state. As such, we choose to enforce con- 

traints in a worst-case sense, which is consistent with the stan- 

ard formulation of multistage MPC ( Lucia et al., 2013 ). 

.2. Multistage MPC 

The closed-loop MPC problem (4) is not solvable directly due to 

he infinite dimensional nature of the control policy �. However, 

ven a finite parametrization of the control laws, e.g., πk (x k ) = 

 k x k + v k , results in (4) taking the form of a semi-infinite opti-

ization problem since the uncertainty set W ⊂ R 

n w is generally 

ncountable. A tractable approximation to (4) can be derived in 

he general nonlinear setting by considering a sample-based ap- 

roximation of p w 

, i.e., 

p w 

(w ) ≈ p ˜ W 

(w ) := 

∑ s 
i =1 p 

i δ(w − w 

i ) , (5) 

here w 

i and p i denote the location and probability of the i th 

ample, respectively, and s is the total number of samples in 

he approximation. This implies that the support of the distur- 

ance distribution is approximated by W ≈ ˜ W = { w 

1 , . . . , w 

s } . In

his case, the future evolution of the uncertainty over the predic- 

ion horizon can be represented by a scenario tree ( Fig. 1 ), where a

cenario represents a path from the root node to a given leaf node. 

 key challenge in scenario tree approximations is that the size of 

he scenario tree grows exponentially with the prediction horizon. 

The so-called multistage MPC (msMPC) formulation ( Lucia et al., 

013 ) avoids branching after a certain number of time steps, called 

he robust horizon N r , after which the disturbances are assumed 

onstant. Consequently, the total number of scenarios is given by 

 = s N r . The resulting optimal control problem can be formulated 

s 

min 

 k, j ,x k, j 

∑ S 
j=1 ω j 

[∑ N−1 
k =0 � (x k, j , u k, j ) + � f (x N, j ) 

]
, (6a) 

.t. x k +1 , j = f (x k, j , u k, j ) + w k, j , (6b) 

x k, j , u k, j ) ∈ Z, (6c) 

 S 
j=1 Ē j u j = 0 , (6d) 

 0 , j = x, ∀ j ∈ { 1 , . . . , S} , ∀ k ∈ { 0 , . . . , N − 1 } , (6e)

here the subscript (·) k, j denotes the j th scenario at sample time 

, ω j is the probability of occurrence of the disturbance sequence 

 j = (w 0 , j , . . . , w N−1 , j ) that is equal to the products of conditional

robabilities (an element of { p 1 , . . . , p s } ) along the path of sce-

ario j, and (6d) enforces the non-anticipativity constraints that en- 

ure the states that branch from the same parent node have the 

ame control input (i.e., current decisions cannot anticipate the fu- 

ure). Here, the vector u j = (u 0 , j , . . . , u N−1 , j ) ∈ R 

n u N denotes the se-

uence of optimal control inputs for the j th scenario and the ma- 
3 
rix Ē j is given by Klintberg et al. (2016) 

¯
 = 

⎡ 

⎢ ⎢ ⎣ 

E 1 , 2 −E 1 , 2 
E 2 , 3 −E 2 , 3 

. . . 
. . . 

E S−1 ,S −E S−1 ,S 

⎤ 

⎥ ⎥ ⎦ 

, 

= 

[
Ē 1 Ē 2 . . . Ē S−1 Ē S 

]
, 

(7) 

here 

 j, j+1 = 

⎡ 

⎣ 

I n u 0 . . . 0 

. . . 
. . . 

. . . 
. . . 

I n u 0 . . . 0 

⎤ 

⎦ . (8) 

The dimensions of these matrices are defined in terms of 

 o, ( j, j+1) , which denotes the number of common nodes between 

onsecutive scenarios j and j + 1 . That is, E j, j+1 ∈ R 

r×n u N and Ē j ∈
 

q ×n u N , where r = n u n o, ( j, j+1) and q = n u 
∑ S−1 

j=1 n o, ( j, j+1) . 

emark 1. Formulating the non-anticipativity constraints using 

he chain-like structure exhibited by the matrices { ̄E j } S j=1 
results 

n highly sparse structures that can be exploited by many solvers, 

s discussed in Klintberg et al. (2016) . This structure can also 

e straightforwardly handled by both primal and dual distributed 

ptimization algorithms, which has recently been explored in 

rishnamoorthy et al. (2019a) . 

emark 2. When N r = N, constraints (6c) will be a direct enforce- 

ent of worst-case constraints under the approximated distribu- 

ion (5) since the state and input evolution is required to stay 



A.D. Bonzanini, J.A. Paulson, G. Makrygiorgos et al. Computers and Chemical Engineering 145 (2021) 107174 

w

F  

s

s

W

e

m

s

v

t

s

p

c

S

3

3

a

A

s

d

m

d

b

x

w  

d

�  

n

f  

s  

F

t  

p

b

t

W

t

i

y

f  

d  

d

D

a

m

I

c

t

t  

s

o

e  

a

i

s

μ  

�

w

[  

a  

o

k

w

l

i

f

d

w

�

v

R

s

F

t

m

i

d

n

R

t  

a

m

n

 

n

o

3

t  

d

A

e

t

w

w  

B  

e

G

w

w

d

a

A

S

u

s

w

ithin the constraints for all possible realizations of disturbances. 

or linear systems f (x, u ) = Ax + Bu with a polytopic disturbance

upport, these constraints exactly enforce worst-case constraint 

anctification as long as the extreme values of W are included in 

˜ 
 Karg et al. (2019) . 

The design of a suitable scenario tree is a tradeoff between cov- 

rage of the uncertainty space and computational cost. One of the 

ost commonly used methods for scenario tree construction is to 

elect the combination of the minimum, nominal, and maximum 

alues in each disturbance dimension, leading to s = 3 n w . Thus, 

he tree grows exponentially with respect to the number of con- 

idered uncertainties, indicating that the choice of scenarios is of 

aramount importance for tractability. Alternative methods for the 

onstruction of sparse scenario trees is discussed in more detail in 

ection 3.3 . 

. Learning-based multistage MPC 

.1. Learning plant-model mismatch with Gaussian processes 

The msMPC problem (6) treats the uncertainty scenarios ˜ W 

s perfectly known a priori , which can be a valid choice under 

ssumption 1 . However, there are a variety of systems that do not 

atisfy this assumption, including those that exhibit a significant 

egree of time-varying uncertainty. One such example is plant- 

odel mismatch, which corresponds to the case that the true un- 

erlying dynamics are unknown. We can represent this situation 

y 

 

+ = f (x, u ) + B d (g(x, u ) + v ) , (9) 

here v ∈ R 

n d is a process noise that is assumed to be normally

istributed, i.e., v ∼ N (0 , �v ) with a diagonal covariance matrix 
v = diag ([ σ 2 

1 
, . . . , σ 2 

n d 
]) . The model (9) is composed of a known

ominal function f : R 

n x × R 

n u → R 

n x and an initially unknown 

unction g : R 

n x × R 

n u → R 

n d to be learned from data, which is as-

umed to lie in the subspace spanned by the matrix B d ∈ R 

n x ×n d .

or example, in the case that all states have unmodeled dynamics, 

hen n d = n x and B d = I n x . We can interpret this representation of

lant-model mismatch as a special case of (1) , where the distur- 

ance w = B d (g(x, u ) + v ) is now state- and-input dependent . 

In this work, we choose to model the noisy vector-valued func- 

ion g using Gaussian process (GP) regression ( Rasmussen and 

illiams, 2006 ). Assuming that we have M > 0 training points in 

he form of previously collected measurements of the states and 

nputs, we can evaluate the mismatch term as 

 j = B 

† 

d 
(x j+1 − f (x j , u j )) = g(x j , u j ) + v j , (10) 

or all j ∈ { 1 , . . . , M} , where B 
† 

d 
denotes the Moore–Penrose pseu-

oinverse of B d . Letting z j = (x j , u j ) , we can define the training

ataset as 

 = { y = [ y 1 , . . . , y M 

] � , z = [ z 1 , . . . , z M 

] � } . (11) 

An important note about GP regression is that the evaluation 

t a new point, which involves the computation of the covariance 

atrix, becomes more expensive as more training data are used. 

n applications where there is a need for fast GP evaluations, one 

an conveniently populate the training set using optimal sampling 

echniques ( Burbidge et al., 2007; Willett et al., 2006 ). Although 

his is beyond the scope of this work, it is an interesting future re-

earch direction. For simplicity, it is assumed that each dimension 

f g can be learned separately. First, we must specify a GP prior on 

ach element a ∈ { 1 , . . . , n d } of g, with known mean function m 

a (·)
nd covariance kernel k a (·, ·) . Then, by conditioning on the train- 

ng data D, a Gaussian posterior distribution can be derived at any 

elected test point z = (x, u ) with the mean and covariance 

d 
a (z) = m 

a (z) + K 

a 
zz (K 

a 
zz + σ 2 

a I) 
−1 ([ y ] ·,a − m 

a 
z ) , (12a)
4 
d 
a (z) = K 

a 
zz − K 

a 
zz (K 

a 
zz + σ 2 

a I) 
−1 K 

a 
z z , (12b) 

here K is the Gram matrix that is composed of the terms 

 K 

a 
zz ] i, j = k a (z i , z j ) , [ K 

a 
z z ] j = k a (z j , z) , K 

a 
zz = (K 

a 
z z ) 

� , K 

a 
zz = k a (z, z) ,

nd [ m 

a 
z ] j = m 

a (z j ) . Many choices exist for the kernel function, one

f the most popular being the squared exponential kernel 

 

a (z i , z j ) = σ 2 
f,a exp 

(
−1 

2 

(z i − z j ) 
� L −1 

a (z i − z j ) 
)
, (13) 

here σ 2 
f,a 

is the signal variance and L a is a positive diagonal 

ength-scale matrix ( Rasmussen and Williams, 2006 ). The result- 

ng state- and input-dependent GP approximation of the unknown 

unction g(x, u ) is then given by 

(x, u ) ∼ N (μd (x, u ) , �d (x, u )) , (14) 

here the mean μd (·) = [ μd 
1 
(·) , . . . , μd 

n d 
(·)] � and covariance 

d (·) = diag ([�d 
1 
(·) , . . . , �d 

n d 
(·)] � ) are concatenated from the indi- 

idual output predictions in (12) . 

emark 3. The assumption that each dimension of g is learned 

eparately is common in literature, e.g., see Hewing et al. (2019) . 

irstly, assuming independence of the outputs reduces computa- 

ional complexity and makes the derivation of confidence intervals 

ore straightforward. Secondly, although vector forms of GP do ex- 

st, it is not clear if they provide a noticeable improvement in pre- 

ictions. The proposed LB-msMPC strategy can accommodate any 

umber of outputs learned with a single GP regression. 

emark 4. We choose to model the unknown dynamics using 

he additive term w = B d (g(x, u ) + v ) in (9) because it provides

n intuitive structure that separates the known part from the un- 

odeled dynamics. Since w is itself a nonlinear function, the dy- 

amics in (9) can be expressed as a new nonlinear function, say, 

f tot (x, u, d ) , where d is defined in (14) . When the uncertainty is

ot additive, the derivation of the scenarios requires an additional 

ptimization step, i.e., maximizing f tot (x, u, d) over d. 

.2. GP-based formulation of msMPC 

Under the GP approximation of g(x, u ) in (14) , the effective dis- 

urbance in (1) becomes w = B d (d(x, u ) + v ) . Due to the depen-

ence on the state and input, the disturbance does not satisfy 

ssumption 1 and the msMPC problem (6) must be modified to 

xplicitly account for plant-model mismatch. A key observation is 

hat w k | w k −1 , . . . , w 0 = w k | x k , u k is Gaussian such that 

 k | x k , u k ∼ N (μw (x k , u k ) , �
w (x k , u k )) , (15) 

here μw (x, u ) = B d μ
d (x, u ) is the mean function and �w (x, u ) =

 d �
d (x, u ) B � 

d 
+ B d �

v B � 
d 

is the covariance matrix function. We can

quivalently represent (15) via an affine transformation of standard 

aussian random variables ξk ∼ N (0 , I n w ) , namely 

 k | x k , u k = μw (x k , u k ) + �w (x k , u k ) 
1 / 2 ξk , (16) 

here (·) 1 / 2 denotes any matrix square root such as the Cholesky 

ecomposition. We can model the random process { ξk } k ≥0 as 

 collection of i.i.d. random variables – a main requirement of 

ssumption 1 – such that the same basic msMPC formulation in 

ection 2 can be applied in this transformed space, i.e., 

min 

 k, j ,x k, j 

∑ S 
j=1 γ j 

[∑ N−1 
k =0 � (x k, j , u k, j ) + � f (x N, j ) 

]
, (17a) 

.t. x k +1 , j = f (x k, j , u k, j ) + w k, j , (17b) 

 k, j = μw (x k, j , u k, j ) + �w (x k, j , u k, j ) 
1 / 2 ξk, j , (17c) 
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x k, j , u k, j ) ∈ Z, (17d) 

 S 
j=1 Ē j u j = 0 , (17e) 

x 0 , j = x, ∀ j ∈ { 1 , . . . , S} , ∀ k ∈ { 0 , . . . , N − 1 } , (17f)

here ξk, j ∈ { ξ 1 , . . . , ξ s } denote the scenarios at each stage in the

ransformed space and { γ j } S j=1 
denote the effective probability of 

ach scenario over time. We refer to formulation (17) as learning- 

ased msMPC (LB-msMPC) due to the fact that the learned GP 

odel is embedded in the predictions (17c) , which is the main dif- 

erence between problems (6) and (17) . 

Let U 

� (x ) = { u � 
0 
(x ) , . . . , u � 

S 
(x ) } denote the optimal solution to

17) that is a function of the measured state value x . The LB- 

sMPC control law is implicitly defined in terms of this solution 

y 

lb (x ) = u 

� 
0 , 1 (x ) , (18) 

here the first input in the sequence is equal for all scenar- 

os according to the non-anticipativity constraints, i.e., u � 
0 , 1 

(x ) = 

 

� 
0 , 2 

(x ) = . . . = u � 
0 ,S 

(x ) . Let X lb ⊆ R 

n x be the domain of attraction

f the LB-msMPC controller, which denotes the set of initial states 

uch that (17) has a feasible solution. To ensure a feasible solution 

lways exists in practice, i.e., X lb = R 

n x , the constraints (17d) can 

e softened using an exact penalty function method as discussed 

n Kerrigan and Maciejowski (20 0 0) . 

emark 5. There may be additional parameters θ that appear in 

he cost or constraint functions in the MPC problem (e.g., setpoint 

alues). In such cases, the control law (18) will depend on these 

arameters κlb (x, θ ) . 

Due to the GP model used to approximate plant-model mis- 

atch, the bounded disturbance assumption is no longer satisfied 

y the support W = R 

n w . Instead of trying to enforce constraints 

or all possible values of uncertainty in this case, we look to use 

onfidence intervals to characterize the expected range of uncer- 

ainty. These confidence intervals can be straightforwardly com- 

uted from the GP model as 

(x, u ) = 

{
w : ‖ w − μw (x, u ) ‖ 

2 
�w (x,u ) ≤ r(α) 

}
, (19) 

here r(·) is the quantile function for the chi-squared distribution 

ith n degrees of freedom ( χ2 
n d 

(α) ) and α ∈ (0 , 1) is the desired

robability level. The choice of α is a tuning parameter, with larger 

alues representing less confidence in our knowledge of the func- 

ion g(x, u ) . The ellipsoidal confidence region (19) can be used to

elect the minimum, nominal, and maximum values in each of the 

rincipal axes by selecting the samples of ξ in each dimension to 

e {−r −1 / 2 (α) , 0 , r −1 / 2 (α) } . 
emark 6. Even though the affine transformation (16) is valid at 

ach individual test point, this does not directly imply that the se- 

uence { ξk } k ≥0 satisfies the i.i.d. assumption. This is a valid repre- 

entation under a stochastic interpretation of the GP in which dif- 

erent outputs can be predicted for evaluations at the exact same 

tate value. The so-called scenario viewpoint results in every ran- 

om GP sample being a deterministic function, which is a more re- 

listic representation of plant-model mismatch. Interested readers 

re referred to Umlauft et al. (2018) for a more detailed discussion 

n these two methods that will be the subject of our future work. 

emark 7. The LB-msMPC problem does not guarantee closed- 

oop constraint satisfaction by design. One way to recover this 

roperty for systems with state- and input-dependent uncertainty 

as recently proposed in Bonzanini et al. (2020b) , wherein the 
5 
ptimal input κlb (x ) is projected onto a safety set of states S ⊆
roj R n x (Z) , i.e., 

 S (x ) = argmin 

u ∈S u (x ) 

‖ u − κlb (x ) ‖ 

2 , 

here 

 u (x ) = { u : { f (x, u ) } � W(x, u ) ⊆ S, (x, u ) ∈ Z } 
s the set of inputs that guarantee the system stays within the 

afe set S for all possible disturbances, with A � B denoting the 

inkowski set addition of two sets A, B ⊂ R 

n . By selecting S to be 

 robust control invariant (RCI) set for the system x + = f (x, u ) + w

nd constraints (2) and (19) , a feasible backup controller is guar- 

nteed to exist due to the fact that S u (x ) � = ∅ for all x ∈ S . A dis-

ussion on RCI set computation for a variety of systems (ranging 

rom linear to nonlinear) is provided in Rakovic et al. (2006) . It is

mportant to note that RCI set construction is generally a challeng- 

ng task, especially as n x increases, and remains an active area of 

esearch. 

.3. Sparse scenario tree construction methods 

There are two main alternatives for deriving sample-based ap- 

roximations to the distribution p ξ , which can both be interpreted 

s approximations to the expectation operator in the closed-loop 

PC problem (4) . The first approach is often referred to as sam- 

le average approximation (SAA) ( Kleywegt et al., 2002 ), which 

pplies Monte Carlo (MC) sampling to obtain realizations of the 

andom disturbance ξ . The convergence rate of MC is O (s −1 / 2 ) 

aflisch (1998) , which is independent of the number of uncertain- 

ies n w 

; however, it is often slow in practice, implying a large num- 

er of samples may be needed to achieve an acceptable level of er- 

or. Numerical quadrature, on the other hand, looks to approximate 

he expected value operator as a sum over a finite set of samples 

s follows 

 ξ { F (ξ )) } = 

∫ 
F (ξ ) p ξ (ξ ) dξ ≈ ∑ s 

i =1 p 
i F (ξ i ) , (20) 

here F (ξ ) is some arbitrary function. The quadrature nodes 

 ξ i } s 
i =1 

then correspond to the uncertainty realizations, whereas 

he quadrature weights { p i } s 
i =1 

represent their associated probabil- 

ties. 

Gaussian quadrature rules are known to be highly efficient since 

hey can exactly integrate polynomial functions up to order 2 s 

sing only s nodes (for s even) for univariate problems n w 

= 1 .

he extension to n w 

> 1 , in the form of a tensor product of all

ombination of univariate quadrature points, still suffers from the 

urse-of-dimensionality . Sparse grid quadrature is a popular alter- 

ative to Gaussian quadrature for high-dimensional integration, as 

t can significantly reduce the number of nodes in the full ten- 

or grid without sacrificing accuracy ( Gerstner and Griebel, 2003 ). 

his approach has been successfully demonstrated in the context 

f msMPC in Leidereiter et al. (2014) . 

In addition to sparse grid quadrature, optimization-based meth- 

ds can be used to systematically locate nodes and weights in 

20) so that the approximation error is minimized. This includes 

oment-matching optimization methods ( Ryu and Boyd, 2015 ), 

hich are a natural extension of Gaussian quadrature to the 

ultivariate case, and optimized stochastic collocation methods 

 Sinsbeck and Nowak, 2015 ) that are a quasi-optimal procedure 

or minimizing the quadrature operator’s error norm. Promising re- 

ults have been demonstrated with these methods in, e.g., Paulson 

nd Mesbah (2018b,a) ; Paulson et al. (2019) , which motivate their 

otential use in msMPC. 

emark 8. Although MC or quadrature can be used to approxi- 

ate the expectation, they may not provide an adequate approx- 

mation of the worst-case uncertainty value that can be impor- 

ant for guaranteeing closed-loop constraint satisfaction. In such 
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ases, a hybrid approach that retains two separate sets of scenar- 

os for the objective and constraints can be useful, as discussed in 

ooney and Biegler (2003) for multiperiod design problems. Such 

 strategy, however, may result in significant online cost due to the 

omplexity in locating the worst-case value of the uncertainty. One 

ay to overcome this challenge is to apply a sensitivity-based pre- 

iction of the worst-case uncertainty value that has been shown 

o substantially reduce the size of the scenario tree in msMPC 

oltorf et al. (2019) . 

. Approximate LB-msMPC using deep learning 

.1. Neural network approximation of the control law 

Even though there have been significant advances in algo- 

ithms and hardware over the past decade, solving the LB-msMPC 

roblem defined in (17) in real time can be computationally 

hallenging. This is further compounded by the inclusion of the 

P prediction (17c) , which requires the Cholesky decomposition 

w (x k, j , u k, j ) 
1 / 2 to be computed at every node of the scenario tree

known to scale cubically with respect to the number of training 

oints. To avoid the real-time solution of non-convex optimization 

roblems, we instead look to develop a data-driven approximation 

f the implicit feedback control law (18) . Neural network approx- 

mation of nonlinear MPC was originally proposed in Parisini and 

oppoli (1995) , which used shallow networks with only one hid- 

en layer that, according to the universal function approximation 

heorem, can approximate any function to any desired accuracy 

evel under fairly mild conditions. 

In this work, we focus on deep neural networks (DNNs) – with 

everal hidden layers – as function approximators due to their en- 

anced approximation capabilities, as demonstrated in several re- 

ent works ( Chen et al., 2018; Bonzanini et al., 2020a; Paulson and 

esbah, 2020; Zhang et al., 2019; Hertneck et al., 2018 ). Further- 

ore, recent theoretical results show that a DNN with a given 

ize can exactly represent the MPC law for linear time-invariant 

ystems ( Karg and Lucia, 2018 ). The LB-msMPC problem (17) is a 

ultiparametric optimization problem that depends on the cur- 

ent measured state (and potentially other parameters as noted in 

emark 5 ). To construct a DNN approximation, a finite number of 

 s feasible state samples x i ∈ X lb are selected and then N s individ- 

al optimization problems are solved to obtain the corresponding 

ptimal inputs κlb (x i ) = u � 
0 , 1 

(x i ) . The training dataset can then be

epresented as 

 = { (x 1 , κlb (x 1 )) , . . . , (x N s , κlb (x N s )) } . (21) 

A standard feed-forward DNN with fully connected layers is de- 

ned as a function of the form 

 (x ;λ) = αL +1 ◦ βL ◦ αL ◦ . . . ◦ β1 ◦ α1 (x ) , (22) 

here L is the number of hidden layers, α0 (x ) = W 0 x + b 0 is an

ffine transformation of the input, αl (ξl−1 ) = W l ξl−1 + b l (with ξl ∈ 

 

H and H denotes the number of nodes per hidden layer) are affine 

ransformations of the hidden layers for all l ∈ { 1 , . . . , L } , βl (·) de-

otes the nonlinear activation functions for l ∈ { 0 , . . . , L − 1 } , and

= { W 0 , b 0 , . . . , W L , b L } denotes the collection of all unknown pa-

ameters in the network that consists of the weights W l and biases 

 l of the affine functions in each of the layers. Common choices for 

he activation function are rectified linear units (ReLU) and the sig- 

oid (hyperbolic tangent) function. Here we use ReLU activations 

ue to their popularity in regression-based tasks. 

For fixed values of the network dimensions L and H, the best 

pproximation of the LB-msMPC control law (18) is defined as 

he one that minimizes a given loss function, such as the mean 
6 
quared error (MSE), over the given training set T 

� = argmin 

λ

1 

N s 

N s ∑ 

i =1 

‖ κlb (x i ) − N (x i ;λ) ‖ 

2 . (23) 

The resulting deep learning-based LB-msMPC control law is de- 

oted by κdnn (x ) = N (x ;λ� ) , which depends on H and L, as well

s other “hyperparameters” in the training algorithm that must be 

elected before λ� can be computed. A systematic approach for se- 

ecting these hyperparameters is described next. 

.2. Bayesian optimization for neural network hyperparameter 

election 

The goal of hyperparameter tuning in deep learning is to find 

he structure and training-related parameters of a DNN such that 

ome loss function is minimized. In general, the network structure 

nvolves the number of layers and nodes, the activation function 

hoice, and the various connections between layers. Examples of 

raining-related parameters include the batch size, learning rate, 

nd/or the decay rate. 

One of the most commonly used approaches for selecting the 

yperparameters is grid search wherein a separate network is 

rained by solving (23) for all possible hyperparameter values in a 

redefined set of options, e.g., Bergstra et al. (2011) . This approach 

enerally scales poorly with respect to the number of considered 

yperparameters and thus is limited to a relatively small set of 

ossibilities. A more sophisticated approach that is gaining popu- 

arity in machine learning is to tackle the hyperparameter selection 

roblem using derivative-free optimization methods. In particular, 

ayesian optimization (BO) ( Snoek et al., 2012 ) has been shown 

o effectively minimize a given loss function, such as the MSE in 

23) , using a small number of objective function evaluations, and 

an straightforwardly handle a mixture of continuous and integer 

ariables that often occur in training of DNNs. 

The general notion underpinning BO is to approximate the ob- 

ective function using a GP that is initially constructed from a 

mall experimental design. The current GP is then used to decide 

hich combination of hyperparameters is most promising by opti- 

izing an acquisition function that balances exploration (search- 

ng the unknown parts of the function) and exploitation (eval- 

ating near points that minimize the loss predicted by the GP) 

 Jalali et al., 2012 ). A new DNN is trained for the optimally cho-

en hyperparameter set to evaluate the loss function and this new 

ata point is incorporated into the GP training data set. The GP 

s then updated given this new data point and the procedure re- 

eats until some convergence criteria is met (or a maximum num- 

er of function evaluations is reached). The BO algorithm is illus- 

rated in Fig. 2 . A variety of acquisition functions can be used, in-

luding: (i) expected improvement, (ii) probability of improvement, 

nd (iii) lower confidence bound. Interested readers are referred to 

artinez-Cantin (2014) for additional details on the BO procedure. 

.3. Control-oriented generation of training data 

The training dataset (21) must be generated before we can se- 

ect the DNN weights and biases λ using (23) and the hyperpa- 

ameters using BO. Ideally, the training samples { x i } N s 
i =1 

should be 

elected such that N s is as small as possible, while a desired ac- 

uracy level in the approximation of the control law is achieved. 

his requires defining the space over which the controller will be 

pproximated – denoted by X . We can generate samples in X us- 

ng a variety of approaches, including MC sampling, quasi-random 

pace filling sampling, and grid-based methods. 

A natural choice for X is the working region of the controller 

 , but this requires knowledge of the domain of attraction of 
lb 
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Fig. 2. Illustration of the Bayesian optimization procedure for selection of DNN hy- 

perparameters. Top figure in the loop shows a Gaussian process and corresponding 

acquisition functions, representing the concept of searching for the optimum, as de- 

scribed in Schneider et al. (2017) . 
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Mesbah (2018b) . 
he LB-msMPC that is difficult to obtain for general nonlinear sys- 

ems. Furthermore, the set X lb is unbounded whenever the oper- 

tional constraints are softened, which is commonly done in prac- 

ice to avoid infeasible optimization solutions. Assuming Z in (2) is 

 compact set, then an alternative is to select X = X to be the set

f states that are allowable during operation defined in (3) . How- 

ver, this assumes that the closed-loop system can be anywhere 

n the (potentially large) state constraint set, including values that 

re highly unlikely to be observed during closed-loop operation. 

his approach has been the focus of much of the recent work on 

NN-based MPC, e.g., Chen et al. (2018) ; Bonzanini et al. (2020a) ;

aulson and Mesbah (2020) ; Hertneck et al. (2018) , which we refer 

o as open-loop training since it neglects any potentially relevant 

nformation on the intended application of the controller. 

Here, we propose an alternative method that looks to define a 

ontrol-oriented representation of X , so that the generated sam- 

les of the state are much more likely to be observed in actual 

losed-loop control implementations. The main idea is to focus on 

 subset of the state constraint space to learn a simpler DNN repre- 

entation of κlb using significantly less training data. In particular, 

e propose to define the set X in terms of the following closed- 

oop tube of trajectories 

 = 

⋃ T 
i =0 X i , (24) 

here X i denotes the reachable set of states at time step i and T 

enotes the total number of time steps of interest. The reachable 

tate sets can be defined as 

 i +1 = f (X i , κlb (X i )) � W(X i , κlb (X i )) , (25) 

or all i ∈ { 0 , . . . , T − 1 } given an initial set of states X 0 . 

The key idea in the proposed approach is that X is defined 

y closed-loop simulations using the uncertain model x + = f (x, u ) + 

 d (d(x, u ) + v ) as the best representation of the unknown true sys-

em (9) . This serves as a proxy for the actual closed-loop system 

 

+ = f (x, κlb (x )) + B d (g(x, κlb (x )) + v ) , (26) 

hat cannot be realized in practice because the LB-msMPC law is 

oo expensive to evaluate in real-time. In other words, although it 

ould be preferred to gather data from actual closed-loop control 

uns (26) , this is not possible due to real-time limitations and in- 

tead we rely on an emulator of the system defined in terms of 

 GP model of the plant-model mismatch. It is important to note 

hat the GP (14) is an explicit function of the system measure- 

ents at M different (x, u ) pairs such that the simulated closed- 
7 
oop tube (24) will approach the unknown tube defined in terms 

f (26) as M → ∞ . 

Even using the GP-based uncertainty description, we still can- 

ot explicitly compute X in (24) due to the underlying nonlinear 

ynamics. Instead, we generate random samples within X using 

he procedure summarized in Algorithm 1 . First, an initial state is 

lgorithm 1 Control-oriented learning of DNN-based LB-msMPC 

ith closed-loop simulation data. 

Input: Nominal dynamics f , GP model of the uncertainty (15), 

umber of simulations N sim 

, set of initial states X 0 , number of time 

teps T , and target set X target . 

Output: Training set T . 
1: for i = 1 to N sim 

do 

2: x ← sample from the set~X 0 
3: for j = 1 to T do 

4: u ← κlb (x ) 

5: T ← T ∪ { (x, u ) } 
6: Use GP to evaluate μw (x, u ) and �w (x, u ) 

7: w ← sample from~N (μw (x, u ) , �w (x, u )) 

8: Project w into level set W(x, u ) 

9: x ← f (x, u ) + w 

0: if x ∈ X target then 

11: break 

ampled from the pre-specified set X 0 . The LB-msMPC law is then 

valuated at this initial state by solving (17) numerically. A real- 

zation from the GP model is then drawn according to (16) that 

s projected onto the level set (19) to ensure the system evolution 

emains bounded. The control input and random disturbance val- 

es are then used to update the state of the system and the over- 

ll process is repeated until either the final time T or a target set 

 target is reached. The target set is incorporated into the algorithm 

o account for the fact that one may want to stop a given simu- 

ation once a certain goal has been met (e.g., a setpoint has been 

eached). Furthermore, note that X �⊂ X since constraint satisfac- 

ion has not been guaranteed in the design of κlb (see Remark 7 ). 

his can be mitigated by incorporating explicit backoffs into the 

esign of the LB-msMPC law. Interested readers are referred to 

aulson and Mesbah (2018a) for more a detailed discussion on ex- 

licit backoffs in the context of nonlinear MPC. 

The set X 0 plays a key role in Algorithm 1 . We generally ex- 

ect that larger X 0 results in a larger X such that the controller 

ust be approximated in a larger region. Thus, from a training 

oint-of-view, it is desired to limit the size of X 0 as much as pos- 

ible, which implies strong benefits are likely to be observed for 

atch, startup, and changeover control problems that consider a 

airly limited window of initial states. In addition, the level sets 

19) influence the growth of the tube over time – increasing α im- 

lies more uncertainty and thus increases the size of X . This pro- 

ides a mechanism to encode our belief in the GP prediction of the 

lant-model mismatch term that directly influences the size of the 

losed-loop tube X . Lastly, we note that an important advantage 

f Algorithm 1 over open-loop training is that we can take advan- 

age of warm starting to accelerate convergence of κlb evaluations 

or i = 1 , . . . , T , as long as the successor state does not move sig-

ificantly far away from the current state. 

emark 9. Algorithm 1 uses the nominal model, along with the 

P-based uncertainty predictions, to perform closed-loop simu- 

ations. This control-relevant model can be straightforwardly re- 

laced with any (potentially black-box) high-fidelity simulation of 

he process. The use of high-fidelity models for closed-loop vali- 

ation and tuning of nonlinear MPC is discussed in Paulson and 
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Fig. 3. Closed-loop simulations of different multi-stage MPC strategies: Worst-case 

msMPC (blue), Adaptive msMPC (purple), and LB-msMPC (red). (a–c) State profiles: 

Thermal dose CEM, surface temperature T, and gas temperature T g . (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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. Case study: atmospheric pressure plasma jet for biomaterials 

rocessing 

We apply the proposed LB-msMPC and approximate LB-msMPC 

trategies for predictive control of a RF-excited atmospheric pres- 

ure plasma jet (APPJ) in Argon Gidon et al. (2018, 2019) . AP- 

Js are a class of widely used cold atmospheric plasma devices 

or surface processing and biomedical applications ( Laroussi et al., 

012; Metelmann et al., 2018; Mani et al., 2015; Morent, 2013 ). 

 major challenge in model-based control of APPJs arises from 

he complex and nonlinear nature of the plasma dynamics, which 

enerally cannot be described by first-principles models that are 

menable to real-time computations ( Gidon et al., 2017 ). Most 

odel-based control strategies for APPJs rely on linear system 

dentification models that inevitably exhibit a large plant-model 

ismatch ( Gidon et al., 2018; 2019 ). This motivates the use of 

earning-based control such as the proposed LB-msMPC to enable 

afe and effective operation of APPJs, in particular for safety-critical 

pplications in plasma medicine. In addition, the fast dynamics of 

lasmas necessitate fast control implementations on the millisec- 

nd timescale. 

.1. Problem formulation 

A high-fidelity model of the RF-excited APPJ in Argon is used 

ere as the plant model, which is described by a differential- 

lgebraic system of equations (see Gidon et al., 2017 for details). 

imilarly to Gidon et al. (2018) , we use subspace identification to 

btain a control-relevant model suitable for describing the plasma 

ynamics within the operating range of interest. In particular, we 

pply a sequence of inputs to generate plant data, from which we 

dentified a linear time-invariant (LTI) model 

T s 
T g 

]+ 
= 

[
0 . 42 0 . 68 

−0 . 06 0 . 26 

][
T s 
T g 

]
+ 

[
1 . 58 −1 . 02 

0 . 73 0 . 03 

][
P 
q 

]
, (27) 

here the states correspond to surface temperature T s and gas 

emperature T g , while the inputs correspond to the flowrate of Ar- 

on q and the applied power to the plasma P . The LTI model (27) is

hen augmented with the following nonlinear expression for the 

hermal dose delivered to the target surface measured in terms of 

umulative equivalent minutes (CEM) ( Gidon et al., 2017; Dewhirst 

t al., 2003 ) 

EM 

+ = CEM + K 

( 43 −T s ) δt, (28) 

here K is given by 

 = 

{
0 . 5 , if T s ≥ 35 

◦C 

0 , otherwise . 
(29) 

Note that the thermal dose CEM has the unit of minutes (min). 

s such, the control-relevant states and inputs are given by x = 

 T s , T g , CEM ] � and u = [ P, q ] � , respectively. Using the simulated

ata obtained from the high-fidelity plant model, we learn a GP 

odel of the plant-model mismatch by using M = 100 measure- 

ents of the form (10) , with additive noise v ∼ N (0 , 0 . 4 2 I 2 ) . 

The control objective is to achieve a specified thermal dose 

EM sp , which implies the following choice of stage and terminal 

osts 

 (x, u ) = 0 , � f (x N ) = ( CEM N − CEM sp ) 
2 . (30) 

In addition, the state and input are constrained to the follow- 

ng regions to ensure both safety of the APPJ during operation and 

easonable accuracy of the model 

25 

◦C 

20 

◦C 

]
≤

[
T s 
T g 

]
≤

[
42 . 5 

◦C 

80 

◦C 

]
, (31) 
8 
1 . 5 W 

1 . 0 slm 

]
≤

[
P 
q 

]
≤

[
8 W 

6 slm 

]
. 

.2. LB-msMPC for thermal dose delivery 

We now demonstrate the effectiveness of the proposed LB- 

sMPC strategy described in Section 3 , which is compared to two 

lternative formulations. The first is worst-case msMPC that uses 

xed bounds derived offline according to the minimum and maxi- 

um values of W(x, u ) in each dimension for all states and inputs 

atisfying (31) , i.e., outer-bounding hyper-rectangle for the state- 

nd input-dependent disturbance set. The second is a heuristic ap- 

roach that we refer to as adaptive msMPC (A-msMPC) that avoids 

mbedding the GP model within the optimal control problem, but 

nstead updates the set of scenarios based on the most recent state 

nd previous input values. This is similar to the idea recently pro- 

osed in Thombre et al. (2019) to update the scenario tree online 

sing recent measurements. 

All MPC problems are solved in Matlab using CasADi 

ndersson et al. (2019) and IPOPT Wächter and Biegler (2006) with 

 prediction horizon N = 5 , robust horizon N r = 1 , i.e., 2 predic-

ion steps, and maximum plasma treatment time of 60 s. A set of 

 

2 = 9 uncertainty scenarios are considered in each MPC formu- 

ation, as discussed in more detail below. The treatment must be 

topped as soon as the target CEM value, i.e., CEM sp = 10 min is 

eached. It is desired to deliver the target CEM as fast as possible, 

eading to a shorter treatment time. The performance of the three 

ontrol strategies is summarized in Fig. 3 . 

We first examine worst-case msMPC as this is the baseline for 

ur comparison. In this case, the scenarios correspond to all pos- 

ible combinations of minimum, nominal, and maximum values 

 [ w min ] i , 0 , [ w max ] i } 2 i =1 
, as estimated from the level sets W(x, u ) .

he consideration of the full uncertainty range at every time step 

akes the controller conservative, as evidenced by the tempera- 

ure trajectory staying well below its upper limit. This greatly re- 
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Table 1 

Optimal hyperparameters of the DNN and corresponding 

ranges considered in the Bayesian optimization. 

Hyperparameter Range Optimal value 

L [1,6] 3 

H [3,20] 18 

μ [10 −4 , 10 −1 ] 4 × 10 −2 

μr 5 × [10 −3 , 10 −1 ] 3 . 2 × 10 −1 

s

t

p

o

t

t

e  

α
a

r

t

i

a

t

t

t

p

o  

t

m

s

t

m

a

m

s

f

t

5

m

o

n

a

a  

w  

(

o

s

t

a

g

v

t

s

a

s

m

t

l

i

p

i

Fig. 4. Best mean squared error (MSE) loss of the κdnn control law approximation 

achieved in the Bayesian hyperparameter optimization. The green circles represent 

the actual loss evaluations (objective function), while the purple squares represent 

the estimated loss based on the GP surrogate model. (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 

Table 2 

Average performance of LB-msMPC and 

DNN-based LB-msMPC under different 

uncertainty realizations. 

κlb κdnn 

Online cost (ms) 177.5 40.3 

Mean absolute error – 0.1017 

d
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tricts the growth of the CEM dose, which fails to reach the desired 

arget by the end of the treatment time. This overly conservative 

erformance is a direct consequence of the conservative estimates 

f the uncertainty bounds. The proposed LB-msMPC strategy, on 

he other hand, consistently updates the prediction of the uncer- 

ainty according to the GP model (14) . Hence, the branching at 

ach stage is given by (16) with [ ξk ] i ∈ {−r −1 / 2 (α) , 0 , r −1 / 2 (α) } for

= 0 . 99 . Since the scenario tree now explicitly captures the state- 

nd input-dependence of the uncertainty, we observe a significant 

eduction in conservatism in Fig. 3 . For example, the temperature 

rajectory is now able to push closer to its bound, which results 

n a faster increase in the delivered thermal dose CEM and thus 

 shorter treatment time. It is important to note that this faster 

reatment time did not come at the expense of constraint viola- 

ions, as the LB-msMPC provides an accurate characterization of 

he plant-model mismatch through the GP model. 

Lastly, we consider the A-msMPC strategy as a heuristic sim- 

lification of the LB-msMPC controller, which considers scenarios 

f the form { [ w k, min ] i , 0 , [ w k, max ] i } 2 i =1 
that are estimated at every

ime step k using the GP model. In particular, the most recent state 

easurement and a best guess for the current control input are 

ubstituted into the GP model to estimate the uncertainty bounds 

hat are held constant over the prediction horizon. As such, A- 

sMPC has an online cost similar to worst-case msMPC, but some 

bility to account for state- and input-dependent plant-model mis- 

atch. As shown in Fig. 3 , although A-msMPC exhibits a con- 

iderably better closed-loop performance compared to msMPC, it 

ails to reach the desired CEM target within the maximum plasma 

reatment time of 60 s. 

.3. DNN-based approximation of LB-msMPC 

The analysis in the previous section indicates that the LB- 

sMPC strategy offers the best closed-loop performance in terms 

f thermal dose delivery while respecting state constraints. We 

ow construct a DNN approximation of the LB-msMPC control law, 

s discussed in Section 4 . Closed-loop training data are generated 

ccording to Algorithm 1 , with T = 60 s, N sim 

= 120 , and X 0 = { x 0 } ,
here x 0 = [37 ◦C , 58 . 87 ◦C , 0 min ] � . The Bayesian optimization

BO) loop, shown in Fig. 2 , is used to select the hyperparameters 

f the DNN. In this case, we treat four hyperparameters as deci- 

ion variables: the number of nodes H, the number of layers L, 

he adaptation parameter μ, and the initial rate of decrease of the 

daptation parameter μr in the Levenberg-Marquardt training al- 

orithm ( Hagan and Menhaj, 1994 ). The optimal hyperparameter 

alues and their corresponding bounds are shown in Table 1 . Note 

hat an MSE loss function and ReLU activation functions were cho- 

en, and the BO was performed using bayesopt in Matlab. We 

void using a very large number of layers and nodes for two rea- 

ons. First, smaller neural networks have smaller memory require- 

ents and, as a result, are more practical for embedded applica- 

ions ( Bonzanini et al., 2020a ). Second, less complex networks al- 

eviate overfitting. Fig. 4 depicts the best MSE error achieved dur- 

ng the BO iterations when using a total of 60 0 0 training sam- 

les. The BO converges after 41 iterations. We expect that perform- 

ng a grid search for selecting the hyperparameters, as commonly 
9 
one, would require many more iterations. The DNN training con- 

erges after 132 epochs, in approximately 17 s on a MacBook with 

 2.4 GHz Intel Core i9 CPU. The best performance was observed 

t epoch 92, where the validation MSE is 0.0182. We note that the 

raining is rather fast since the DNN has a relatively simple struc- 

ure, meaning it is not too deep. 

Fig. 5 compares the performance of the approximate control 

aw κdnn to that of the LB-msMPC law κlb . We superimpose the 

esults of 10 closed-loop simulations, each of which correspond- 

ng to different noise realizations. We observe that the closed-loop 

hermal dose CEM profile and the state profiles of the LB-msMPC 

ontroller and the DNN-based approximation are nearly identical. 

his can be attributed to training the DNN using closed-loop data. 

y examining the optimal input sequences, it is evident that κdnn 

losely matches that of κlb , with minor discrepancies that can be 

ttributed to the DNN approximation error. It should be noted that 

his error propagates to future control actions. In other words, a 

light difference on the first control action taken by the DNN con- 

roller leads to different measurements when applied to the sys- 

em, and, subsequently, different control actions in the next step. 

s shown in the inset in Fig. 5 b, neither the LB-msMPC controller 

or its DNN-based approximation violate the surface temperature 

onstraint, which suggests that both controllers can push the sys- 

em to operate near its constraint. To evaluate the ability of κdnn 

n approximating the LB-msMPC law κlb throughout the relevant 

tate space, X , we run 50 closed-loop validation simulations over 

 course of N sim 

= 120 steps, which yields a total of 60 0 0 eval-

ations of the control law. Table 2 lists the mean average error 

MAE) of the DNN-based control law κdnn . As expected, the MAE 

stimated via the closed-loop simulations is consistent with the 

SE of the DNN, as reported in Fig. 4 . Fig. 5 suggests that the

reatest discrepancy between the two control laws is observed for 
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Fig. 5. Closed-loop simulations of LB-msMPC (red) and DNN-based approximate LB-msMPC (blue). (a–c) State profiles: Thermal dose CEM, surface temperature T, and gas 

temperature T g . (d–e) Input profiles: Applied power P and Argon flow rate q . (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

t

a

c

u

t

w

i

κ
t

t

s

t

c

6

c

d

a

a

r

w

l

e

s

c

s

t

w

t

m

c

L

c

f

f

r

f

M

D

A

u

w

t

i

t

v

R

A  

A  

B  

B  

B  

B

he flow rate at time instants where CEM experiences the most 

brupt changes as it gets close to the setpoint and, thus, the rate of 

hange needs to abruptly decrease. Nevertheless, κdnn can be eval- 

ated more than 4 times faster than κlb (see Table 2 ). The compu- 

ation time reported for κlb is the evaluation time of the OCP (17) , 

hich includes the adaptation of the scenario tree in prediction us- 

ng the GP. On the other hand, the computation time reported for 

dnn includes the evaluation of the DNN, which has already been 

rained offline using closed-loop data. It should also be noted that 

he average computation time of LB-msMPC is expected to increase 

ubstantially with the problem complexity, whereas the computa- 

ion time of the DNN-based control law mainly depends on the 

omplexity of the DNN structure ( Bonzanini et al., 2020a ). 

. Conclusions and future work 

We presented a learning-based multistage MPC strategy for un- 

ertain nonlinear systems with hard-to-model and time-varying 

ynamics. The LB-msMPC strategy uses Gaussian processes to learn 

 state- and input-dependent description of plant-model mismatch 

nd accordingly adapt the scenario tree in real-time. To address the 

apid scaling of the computational complexity of the LB-msMPC 

ith the number of branches and prediction horizon, the control 

aw was approximated using DNNs to obtain a cheap-to-evaluate 

xplicit control law. We presented an algorithm that uses a Gaus- 

ian process representation of plant-model mismatch to generate 

losed-loop data for training the DNN-based control law in the 

tate-space regions most relevant to control. The effectiveness of 

he proposed LB-msMPC and approximate LB-msMPC strategies 

as demonstrated on a simulated cold atmospheric plasma sys- 

em used for (bio)materials processing. We showed that the LB- 

sMPC strategy can effectively reduce conservativeness of worst- 

ase msMPC. Furthermore, the DNN-based approximation of the 

B-msMPC law can significantly reduce the online computational 

ost of control, while exhibiting an almost indistinguishable per- 
10 
ormance from that of the LB-msMPC strategy. Future work will 

ocus on deploying such approximate learning-based MPC laws in 

esource-limited embedded systems, and provide constraint satis- 

action guarantees using projected neural networks ( Paulson and 

esbah, 2020 ). 
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