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Abstract

The performance of optimization- and learning-based controllers critically depends

on the selection of several tuning parameters that can affect the closed-loop control

performance and constraint satisfaction in highly nonlinear and nonconvex ways.

Due to the black-box nature of the relationship between tuning parameters and gen-

eral closed-loop performance measures, there has been a significant interest in auto-

matic calibration (i.e., auto-tuning) of complex control structures using derivative-free

optimization methods, including Bayesian optimization (BO) that can handle expen-

sive unknown cost functions. Nevertheless, an open challenge when applying BO to

auto-tuning is how to effectively deal with uncertainties in the closed-loop system

that cannot be attributed to a lumped, small-scale noise term. This article addresses

this challenge by developing an adversarially robust BO (ARBO) method that is par-

ticularly suited to auto-tuning problems with significant time-invariant uncertainties

in an expensive system model used for closed-loop simulations. ARBO relies on a

Gaussian process model that jointly describes the effect of the tuning parameters

and uncertainties on the closed-loop performance. From this joint Gaussian process

model, ARBO uses an alternating confidence-bound procedure to simultaneously

select the next candidate tuning and uncertainty realizations, implying only one

expensive closed-loop simulation is needed at each iteration. The advantages of

ARBO are demonstrated on two case studies, including an illustrative problem and

auto-tuning of a nonlinear model predictive controller using a benchmark bioreactor

problem.
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1 | INTRODUCTION

Recent years have witnessed significant progress in the design and

application of optimization- and learning-based controllers that can

deal with multivariable dynamics, constraints, and uncertainties that

appear in the system and/or the environment. However, the design of

such advanced controllers hinges on the selection of several tuning

parameters that may strongly affect closed-loop performance and con-

straint satisfaction. Additionally, these tuning parameters can come in

a variety of different forms including continuous (e.g., weight parame-

ters), discrete (e.g., logical switching conditions such as adaptive tun-

ing), and categorical (e.g., type of numerical discretization scheme)

representations, which implies their impact on performance can be

highly nonlinear and nonconvex. Therefore, in practice, these tuning

parameters are usually selected via trial-and-error experimentation or

heuristic-based strategies that rely on expensive closed-loop simula-

tions or experiments, which can become prohibitive when the effects

of system uncertainties are accounted for.1
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To mitigate the expensive nature of tuning of advanced control-

lers, there has been an increasing interest in automatic calibration (aka

auto-tuning2–6) of complex control structures to achieve desired

closed-loop performance. To this end, data-driven optimization

methods have been found to be particularly promising since auto-

tuning can be interpreted as a black-box problem in which the objec-

tive function is expensive to evaluate, potentially nonconvex and

multi-modal, and whose derivatives either do not exist or cannot be

determined. Bayesian optimization (BO)7,8 has emerged as a powerful

approach for handling these types of black-box problems, even when

the measured objective value is corrupted by noise. Several recent

works have successfully demonstrated BO for model learning and

auto-tuning of model predictive control (MPC)5,9–11 and other com-

plex control structures.12,13

Standard BO approaches for auto-tuning rely on nonparametric

Gaussian process (GP) models,14 constructed from closed-loop sim-

ulation or experimental data, to describe the impact of controller

tuning parameters on the closed-loop performance measures; these

GP models can be interpreted as probabilistic “surrogate models”
for the performance measures of interest. Although GP models are

able to account for the effect of system uncertainties

(e.g., exogenous disturbances, measurement noise, and/or time-

invariant uncertainties in process models used for closed-loop simu-

lations) by optimizing an “effective noise” hyperparameter, this rep-

resentation can lead to poor predictions when uncertainties are

relatively large. That is, the GP model yields such a large variance in

predictions that the mean prediction is dominated by noise,

suggesting the GP model is uninformative. In such cases, the BO

procedure will become quite fragile and thus will lead to poor over-

all results. We addressed this challenge in our recent work by intro-

ducing an auto-tuning approach, referred to as probabilistically

robust Bayesian optimization (PRBO), that provides a probabilistic

robustness certificate at every iteration (i.e., every time a new set of

tuning parameters is tested).15 The key idea in PRBO is to use

sample-based estimates of the worst-case performance measures at

each iteration. We show how many samples are required—indepen-

dent of the number and probability distribution of the

uncertainties—to ensure these worst-case estimates are not vio-

lated by other randomly sampled uncertainties within a prespecified

probability level. However, since PRBO provides this certification at

every iteration, it generally requires a fairly large number of closed-

loop simulations/experiments to be performed in order to establish

accurate estimates of the worst-case performance measures. This

can limit the applicability of PRBO especially when expensive “high-
fidelity” process models (or experiments) are utilized for generating

closed-loop data.

In this article, we present an alternative robust BO approach to

PRBO that is well-suited for auto-tuning problems that rely on expen-

sive closed-loop simulations with significant time-invariant uncer-

tainties. This type of problem setting appears in a wide variety of

applications that use complex process models and model predictive

controllers (MPCs), including advanced manufacturing and energy

systems,16 among many other applications. As opposed to measuring

an estimate of the worst-case performance directly (as done in PRBO),

the proposed approach, referred to as adversarially robust BO (ARBO),

looks to solve a problem that simultaneously captures the effect of

the controller tuning parameters and system uncertainties on the

closed-loop performance. In contrast to typical BO approaches where

a GP model is used to approximate the objective as a function of the

decision variables (in this case controller tuning parameters), we utilize

a GP to approximate the objective explicitly as a function of decision

variables and uncertain parameters. In this way, we can directly use

this joint GP model (where joint refers to the simultaneous consider-

ation of the tuning and uncertain parameters) to predict the location

of a minimax solution to the robust auto-tuning problem. We show,

however, that using a naive mean-based GP approximation of the per-

formance measure will yield overall poor tuning results, as it lacks the

ability to tradeoff between exploration of unknown parts of the

design-uncertainty space and exploitation of the current estimate of

the best tuning parameters. Instead, the proposed ARBO method uses

a GP confidence bound-based procedure suggested in17 to realize a

tradeoff between the exploration and exploitation of the design-

uncertainty space. In this approach, we alternate between an optimis-

tic prediction of the performance measure to select the next best set

of tuning parameters and a pessimistic prediction of the performance

measure to select the most likely worst-case uncertainty for the

suggested best tuning parameters. By applying this two-step proce-

dure, we only require one (expensive) closed-loop simulation at each

iteration of ARBO, which is significantly less than alternatives such as

PRBO. Building upon the theory in,17 we also discuss the rate of con-

vergence of the ARBO method, and provide an explicit upper bound

on the distance from the best suggested tuning parameters and the

true minimax optimal solution, which decays to zero as the number of

iterations increases.

We demonstrate the value of the proposed ARBO method on

two case studies; an illustrative problem to highlight the key steps

and advantages of ARBO and a challenging auto-tuning problem in

which a highly nonlinear bioreactor with several unknown parame-

ters is controlled using nonlinear MPC (NMPC) with multiple con-

straint backoffs that must be tuned. It is important to note that,

although we focus on nominal MPC, the ARBO can robustly auto-

tune any controller structure including those that incorporate

recently proposed safety schemes such as the model-predictive

safety (MPS) method.18,19

2 | PROBLEM STATEMENT

We are interested in the auto-tuning problem for a general class of

controllers, that is, we want to select the unknown tuning parameters

such that we achieve the best possible closed-loop performance,

while protecting against potentially adversarial effects of some “exter-
nal” source of uncertainty. Let θ�ℝp1 denote the vector of controller

tuning parameters and δ�ℝp2 denote the system (plant) uncertainty

vector. Given some scalar measure of the closed-loop performance

f :ℝp1 �ℝp2!ℝ whose structure is unknown, we formulate the auto-
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tuning problem as the following robust black-box optimization

problem

min
θ � Θ

max
δ � Δ

f θ,δð Þ, ð1Þ

where Θ�ℝp1 and Δ�ℝp2 are the compact sets of possible tuning

parameters and uncertainty realizations, respectively. The controller

tuning parameters θ can represent any manipulable value including

discrete structural choices (e.g., turning on/off a component) that are

modeled with binary variables, as well as parametric choices that are

modeled by continuous variables (e.g., increasing a weight value

between lower and upper bounds). To account for the effects of

uncertainty on controller tuning, we must quantify the impact of dif-

ferent realizations of δ on the performance measure f. Thus, through-

out this work, we assume that a high-fidelity simulator of the process is

available for simulating the effect of specific controller configurations

and uncertainty realizations on the closed-loop performance measure

f.* This allows f to be flexibly specified by the user in terms of any

finite-time metric; some common examples include total operating

cost or setpoint tracking error, average or maximum constraint viola-

tion, and end-of-batch product quality.

We aim to find the (approximate) global solution to the controller

auto-tuning problem (1). The specific algorithm chosen to solve

Equation (1) will depend on its underlying characteristics. Thus, we

assume that the following characteristics hold, which is generally the

case in simulation-based tuning of advanced controllers under

uncertainty.1

Assumption 1.

1. The worst-case uncertainty δ ? θð Þ� argmaxδ � Δf θ,δð Þ
cannot be determined from prior knowledge.

2. The feasible sets Θ and Δ are known and compact.

3. The closed-loop performance measure f θ,δð Þ is fully black-

box in nature such that no closed-form expression exists for f

and it does not have any known special structure such as

convexity or linearity.

4. The total dimension of the inputs p¼ p1þp2 is typically not

too large; p≤20 is a good rule-of-thumb.

5. When the closed-loop performance performance is evalu-

ated, we only observe f θ,δð Þ, meaning that first- or second-

order derivatives cannot be evaluated.

6. The observations of f θ,δð Þ are corrupted by noise. That is,

y¼ f θ,δð Þþε, where ε�N 0,σ2ε
� �

.

Characteristics (1)–(3) in Assumption 1 imply minimal restrictions

on the structure of the to-be-designed controller such that the pro-

posed method for controller auto-tuning can be applied even when

the control law is defined implicitly—for example, as is the case in

MPC. Characteristic (5) prevents application of derivative-based opti-

mization methods for solving Equation (1). For simplicity, characteris-

tic (6) assumes the effective noise ε leading to noisy observations y of

the closed-loop performance measure is normally distributed with

zero mean. The variance of noise can be treated as a hyperparameter,

as discussed in Section 4. Notice that the closed-loop performance

measure f θ,δð Þ is quantified through possibly expensive simulations of

the closed-loop system using a process simulator. As such, the perfor-

mance measure can be queried a limited number of times; often on

the order of a few hundred of closed-loop simulations.

Remark. Although δ can in principle represent any

source of uncertainty, this may lead to a high-

dimensional representation of δ due to the time-varying

nature of control problems. As such, this may not satisfy

characteristic (4) in Assumption 1. Instead, δ should rep-

resent the key time-invariant uncertainties

(e.g., sensitive model parameters and/or initial condi-

tions) that have the most dominant influence on the

performance measure f. If prior knowledge about the

dominant time-invariant uncertainties is not available, it

can be obtained via global sensitivity analysis,20,21 which

can be facilitated via surrogate modeling.22 Notice that,

although not included in δ, the effect of time-varying

process and measurement noise is accounted for

through noisy observations of f; see characteristic (6) in

Assumption 1.

The most direct way to solve Problem (1) would be via a nested

optimization approach wherein an inner maximization is performed

for each iteration of an outer minimization algorithm.23 This approach,

however, will expend excessive effort computing the worst-case

closed-loop performance for every selected design variables θ, which

is not appropriate when dealing with expensive evaluations of f using

a high-fidelity process simulator. This also precludes the use of evolu-

tionary algorithms,24 which are popular techniques when the objec-

tive function can be evaluated a large number of times. Alternatively,

we look to reformulate (1) as a bandit feedback problem.25 The main

idea is to sequentially select θt,δtð Þ�Θ�Δ at every iteration t¼
1,2,…,Nt (here, “iteration” refers to a single closed-loop simulation),

and receive the corresponding noisy observations of the cost

yt¼ f θt,δtð Þþεt. Our regret in this decision can be quantified in terms

of the instantaneous robust-regret rδt , which is defined as

rδt ¼ max
δ � Δ

f θt,δð Þ� max
δ � Δ

f θ ? ,δð Þ, ð2Þ

where θ ? � argminθ � Θmaxδ � Δf θ,δð Þ is any global solution to

Equation (1). In words, the robust-regret in (2) quantifies how far away

our suggested decision θt is from the best possible solution θ ?

(in units of the objective function). This definition is analogous to the

standard regret definition g θtð Þ�g θ ?ð Þ in the multi-armed bandit liter-

ature26 when our objective function is defined as the worst-case reali-

zation of the performance function g θð Þ¼maxδ � Δf θ,δð Þ. Ideally, we

could derive an algorithm that minimizes the cumulative robust-regret

after T iterations Rδ
T ¼

PT
t¼1r

δ
t ; however, these quantities cannot be

revealed to the algorithm since they require perfect knowledge of
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the global solution. A viable alternative is to select an algorithm that

has no robust-regret, that is, limT!∞
1
TR

δ
T ¼0.

17 The only way that the

average robust-regret can approach zero is for the instantaneous

robust-regret to approach zero, since rδt ≥0 must be non-negative.

This implies that there exists a t>0 such that maxδ � Δf θt,δð Þ is arbi-

trarily close to maxδ � Δf θ ? ,δð Þ and the algorithm converges as long as

Rδ
T grows sublinearly with T. In the absence of uncertainty (i.e., the

nominal setting of Δ¼ bδn o
), we can easily find the point θ1,…,θTf g

that minimizes the (nonrobust) regret by selecting the point that pro-

duces the smallest value of f θt,bδ� �
. This is no longer true in the robust

case, however, due to the inclusion of the max operator in

Equation (2).

Therefore, we require a new recommendation procedure in addi-

tion to the selection policy for θt,δtð Þ. In the next section, we present

a variant of the sequential learning algorithm in,17 referred to as

adversarially robust BO, that can achieve the desired no robust-regret

property using a combined GP model for f θ,δð Þ, which simultaneously

models the effect of the design variables and uncertainty realizations

on the closed-loop performance measure.

3 | ADVERSARIALLY ROBUST BO

In this section, we first review GP regression for data-driven model-

ing of the closed-loop performance measure. We will then present

the adversarially robust BO (ARBO) algorithm, followed by an over-

view of established theoretical results17 related to the robust-regret

when solving Equation (1) under the conditions specified in

Assumption 1.

3.1 | GP regression

Let x¼ θΤ ,δΤ
� �Τ

�X denote the concatenated vector of design vari-

ables and uncertainties, where X ¼Θ�Δ�ℝp and p¼ p1þp2. We

interchangeably denote f θ,δð Þ as f xð Þ (and vice versa) throughout the

article. Since the structure of f is not known, we cannot make rigid

parametric assumptions for f. However, without further assumptions,

it would be impossible to achieve sublinear robust-regret for

Equation (1); for example, f could be discontinuous at every input

x�X in the worst-case. Therefore, we assume that a certain degree

of smoothness holds in practice, such that we can leverage GP

models that enforce smoothness implicitly without making any para-

metric assumptions. The basic idea underpinning GPs is that the

function values f xð Þ, associated with different values of x, are random

variables and any finite collection of these random variables have a

joint Gaussian distribution.14 A GP distribution, denoted by

f xð Þ�GP μ xð Þ,k x,x0ð Þð Þ, is parametrized by a prior mean function μ xð Þ
and a covariance (or kernel) function k x,x0ð Þ. Without loss of general-

ity, we assume that the prior is zero mean, that is, μ xð Þ¼0 for all

x�X .† The chosen class of covariance functions determines the prop-

erties of the fitted functions. In this work, we will focus on stationary

covariance functions from the Mateŕn class,28 defined as

k x,x0;ν,Ψð Þ¼ ζ2
21�ν

Γ νð Þ
ffiffiffiffiffi
2ν
p

r x,x0ð Þ
� �

Bν

ffiffiffiffiffi
2ν
p

r x,x0ð Þ
� �

, ð3Þ

where r x,x0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x0ð ÞL�2 x�x0ð Þ

q
is the scaled Euclidean distance,

L¼diag l1,…, lpð Þ is a diagonal scaling matrix composed of length-scale

parameters l1,…, lp >0, ν is a parameter that dictates smoothness

(i.e., the corresponding function is ν=2�1d e times differentiable), ζ2 is

a scaling factor for the output variance, Γ and Bν are the Gamma and

modified Bessel functions, respectively, and Ψ¼ l1,…, lp,ζf g are the

hyperparameters of the kernel for a fixed value of ν.

Training a GP model corresponds to calibrating Ψ,σεf g to the

available data. For now, we assume the kernel hyperparameters

are known and discuss the training procedure further in Section 4.

Although we focus on kernels of the form (3) for simplicity, many

other kernels are available and can be used in place of this struc-

ture, if needed. Furthermore, one can treat the kernel structure as

an additional hyperparameter that is sequentially updated at each

step of the BO process. However, since this introduces a set of

conditional hyperparameters (corresponding to the internal

parameters specific to each kernel), this can substantially increase

the GP training cost.

A key advantage of GPs, in addition to their nonparametric

nature, is the availability of simple analytic expressions for the

posterior distribution of f xð Þ for any input x�X . Let us assume that

we have t previous observations of the objective yt¼ y1,…,yt½ �Τ at

inputs Xt¼ x1,…,xtf g. The GP model can account for the fact

that these measurements are noisy, that is, yt ¼ f xtð Þþ εt

where εt�N 0,σ2ε
� �

. Given that the noise εt obeys a normal distribu-

tion, the posterior f jXt,yt remains a GP GP μt xð Þ,kt x,x0ð Þð Þ with the

following expressions for the mean μt, covariance kt, and vari-

ance σ2t .
14

μt xð Þ¼ kΤt xð Þ Ktþσ2ε It
� ��1

yt, ð4aÞ

kt x,x0ð Þ¼ k x,x0ð Þ�kΤt xð Þ Ktþσ2ε It
� ��1

kt x0ð Þ, ð4bÞ

σ2t xð Þ¼ kt x,xð Þ, ð4cÞ

where kt xð Þ¼ kj x1,xð Þ,…kj xt,xð Þ� �Τ
contains the covariances between

the input x and observed data points Xt, the covariance matrix Kt has

entries Kt½ �ij¼ k xi ,xj
� �

for all i, j� 1,…,tf g, and It is the t� t identify

matrix. The main advantage of the posterior GP expressions in

Section 3.1 is that they can be used to generate confidence bounds on

the prediction of f θ,δð Þ for any choice of input. Both the upper and

lower confidence bounds will be leveraged in the development of the

ARBO algorithm, as described next.

3.2 | ARBO algorithm

Given a so-called exploration parameter βt, we can define the following

upper and lower confidence bounds on f
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ucbt θ,δð Þ¼ μt θ,δð Þþβ1=2t σt θ,δð Þ, ð5aÞ

lcbt θ,δð Þ¼ μt θ,δð Þ�β1=2t σt θ,δð Þ, ð5bÞ

which are readily determined from the posterior GP in Equation (4).

For sufficiently large choices of βt, these confidence bounds will be

large enough to ensure the no robust-regret property with high prob-

ability (see Theorem 1). The ARBO algorithm,17 which relies on the

lower and upper confidence bounds (5), is presented in Algorithm 1.

The suggested θt at each iteration is the one that has the minimum

“robust” lower confidence bound, as given in Equation (8). For this

choice of θt, we must select a feasible uncertainty sample. According

to Equation (9), we select the uncertainty value δt that maximizes the

upper confidence bound. We can interpret these opposite choices as:

(i) optimistic selections under uncertainty for θt and (ii) pessimistic

selections under uncertainty for the anticipated worst-case point δt.

While the choice (i) is common to traditional BO algorithms that utilize

confidence bounds, the choice (ii) is unique to ARBO to mitigate any

possible negative effects caused by the uncertainty. Once the main

loop in Algorithm 1 has been completed, a final “recommended” point
must be selected from the sequence θ1,…,θTf g. Although there are

many potential choices, we choose the one that minimizes a pessimis-

tic bound on the robust-regret in Equation (10). To this end, let us

assume f θ,δð Þ≤ ucbt�1 θ,δð Þ for all θ,δð Þ�Θ�Δ; this condition will be

more formally stated later. Then, we can define the following pessi-

mistic estimate of rδt

rδt ¼max
δ � Δ

ucbt�1 θt,δð Þ� f ? , ð6Þ

where f ? ¼maxδ � Δf θ ? ,δð Þ¼minθ � Θmaxδ � Δf θ,δð Þ, which must sat-

isfy rδt ≤ r
δ
t for all t≥1 under the above-stated assumption. The main

difference between Equations (2) and (6) is that the algorithm has

enough information to identify the index t ? that minimizes rδt since

the global solution does not depend on t. Yet, rδt is related to another

important quantity in bandit optimization termed the simple robust-

regret after T iterations, which is denoted by SδT and defined as

SδT ¼ min
t � 1,…,Tf g

rδt ¼ min
t � 1,…,Tf g

max
δ � Δ

f θt,δð Þ� f ? : ð7Þ

It is evident that SδT ≤ r
δ
t ? for all T ≥1. This in turn implies that bounds

established on rδt ? immediately transfer to the simple robust-regret SδT ,

as discussed in the next section. Notice that, Algorithm 1 relies on

only a single expensive closed-loop simulation run to be performed at

every iteration, which is significantly fewer than the vast majority of

available alternatives, such as.23,29

3.3 | Upper bound on simple Robust-Regret

The ARBO Algorithm 1 requires selection of the exploration

parameters βtf gt ≥1 that specify the width of the confidence intervals

on f. To this end, we rely on a simple result from Reference 25 to

select this sequence. We will focus on the case of a finite set X ¼
Θ�Δ for simplicity, and discuss the extension to a compact and con-

vex set later.

Lemma 1. Confidence bounds25 Let f xð Þ�
GP 0,k x,x0ð Þð Þ be a sample of a GP for which noisy obser-

vations yt¼ f xtð Þþεt with εt�N 0,σ2ε
� �

are available. Let

βt¼2log Xj jt2π2= 6αð Þ� �
for a specified failure probability

α� 0,1ð Þ and finite discrete set Xj j<∞. Then, the follow-

ing bounds on the objective function f xð Þ

f xð Þ� lcbt�1 xð Þ,ucbt�1 xð Þ½ �, 8x�X ,8t≥1, ð11Þ

hold with probability (over the GP posterior at every iteration) at

least 1�α.

ALGORITHM 1

The robust sequential learning algorithm for ARBO

Input: The set of the design variables Θ and the uncertainty

Δ; kernel k corresponding to GP prior; exploration parame-

ters βtf gt≥1; and total number of iterations T.

1: Initialize the mean and standard devia-

tion μ0,σ0ð Þ 0,k1=2
� �

2: for t¼1 to T do

3: Solve the following min-max optimization problem

for θt

θt¼ argmin
θ � Θ

max
δ � Δ

lcbt�1 θ,δð Þ: ð8Þ

4: Solve the following maximization problem for δt

δt¼ argmax
δ � Δ

ucbt�1 θt,δð Þ: ð9Þ

5: Run a closed-loop simulation at xt¼ θΤt ,δ
Τ
t

� �Τ
to compute

performance measure yt¼ f θt,δtð Þþεt.

6:Perform Bayesian posterior update to estimate μt, σt,

lcbt, and ucbt using (4) and (5) by including the latest query

of the closed-loop performance measure xt,ytf g.
7: end for

8: Return the point θt ? with the smallest upper confi-

dence bound (our best guess of the optimal design

variables)

t ? ¼ argmin
t � 1,…,Tf g

max
δ � Δ

ucbt�1 θt,δð Þ: ð10Þ
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Next, we define the maximum information gain (MIG), which pro-

vides a measure of the informativeness of any finite set of sampling

points A�X .
30

Definition 1. Let A�X denote any subset of sampling

points from X and let f be a sample of a GP model with

the same sampling conditions stated in Lemma 1. The

maximum information gain for f under t measurements is

defined as

γt ¼ max
A�X :jAj¼t

1
2
logdet Itþσ�2ε KA

� �
, ð12Þ

where KA ¼ k x,x0ð Þ½ �x,x0 � A is the kernel matrix. Note that the term inside

of the max in Equation (12) is the Shannon mutual information between f

and the observations at points x�A. ⊲

We can now state the main theorem that bounds the perfor-

mance of the ARBO Algorithm 1. We give a brief sketch of the proof

of this result, which is a slightly different version of that provided in

Reference 17, (Supporting Information).

Theorem 1. Upper ARBO performance bound17 Fix

α� 0,1ð Þ, βt¼2log Xj jt2π2= 6αð Þ� �
, and T ≥1. Running

the ARBO algorithm for a sample f of a GP with zero

mean and kernel k x,x0ð Þ, the simple robust-regret must

satisfy

Pr SδT ≤ r
δ
t ? ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1βTγT

T

r( )
≥ 1�α, ð13Þ

where C1¼8=log 1þσ�2ε

� �
.

Proof. From Lemma 1, we know that lcbt�1 xð Þ
≤ f xð Þ≤ucbt�1 xð Þ holds for all x�X ,t≥1 with probabil-

ity greater than or equal to 1�α. Given this, from the

definitions in Equations (2) and (6), we have

rδt ¼ max
δ � Δ

f θt ,δð Þ� min
θ � Θ

max
δ � Δ

f θ,δð Þ≤ rδt ¼max
δ � Δ

ucbt�1 θt,δð Þ�min
θ � Θ

max
δ � Δ

f θ,δð Þ,
¼ ucbt�1 θt ,δtð Þ�min

θ � Θ
max
δ � Δ

f θ,δð Þ,
≤ ucbt�1 θt,δtð Þ�min

θ � Θ
max
δ � Δ

lcbt�1 θ,δð Þ,
¼ucbt�1 θt,δtð Þ�max

δ � Δ
lcbt�1 θt,δð Þ,

≤ ucbt�1 θt,δtð Þ� lcbt�1 θt ,δtð Þ,
¼2β1=2t σt�1 θt ,δtð Þ,

where the first line follows from the upper bound on f, the second line

follows from the definition of δt in Equation (9), the third line follows

from the lower bound on f, the fourth line follows from the definition

of θt in Equation (8), the fifth line follows from the fact that

maxδ � Δlcbt�1 θt,δð Þ≥ lcbt�1 θt,δtð Þ for any feasible choice of δt �Δ, and

the sixth line follows from the difference between the confidence

bounds in Equation (5). Given this bound, we can also see that the fol-

lowing sequence of inequalities must hold with probability ≥ 1�α

Rδ
T

� �2
≤ T

XT

t¼1 rδt
� �2

≤4βT
XT

t¼1σ
2
t�1 θt,δtð Þ,

where the first step follows from the Cauchy-Schwarz inequality and

the second step follows from the monotonicity of the sequence

βtf gt≥1. Next, we use a special case of Reference 25 (Lemma 5.4), to

establish a bound on the sum of variances in terms of the MIG (12)

4
XT

t¼1σ
2
t�1 θt,δtð Þ≤C1γT ,

for C1¼8=log 1þσ�2ε

� �
. From these results, it follows that

Pr Rδ
T ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1TβTγT

p	 

≥1�α. The assertion in Equation (13) follows by

noting that the minimum of a sequence must be less than or equal to

the average, that is, SδT ≤
1
TR

δ
T , in addition to the fact that the same

inequalities hold for rδt in place of rδt .■

As the total number of iterations T increases in Equation (13), we

observe that the simple robust-regret gets closer to the desired value

of zero, implying the global minimax solution has been found in the

limit as T!∞, as long as the numerator C1βTγT � o Tð Þ, where o is

little-o notation that implies C1βTγT decays faster than T. The choice

of βT in Theorem 1 clearly shows logarithmic growth with respect to

T. However, we also require bounds on the MIG γT to establish con-

vergence. It was shown in Reference 25 that γT has sublinear depen-

dence with respect to T for many commonly used kernels, including

the Mateŕn class, such that the ARBO algorithm converges to function

evaluations near θ ? with high probability for sufficiently small choices

of α. This is a key advantage of the confidence bound-based ARBO

algorithm compared to available alternatives whose theoretical prop-

erties have yet to be understood.

4 | PRACTICAL IMPLEMENTATION
OF ARBO

In this section, we discuss some of the main aspects in practical imple-

mentation of the ARBO Algorithm 1, as also considered in the case

studies presented in Section 5.

4.1 | Choice of exploration constant βt

Lemma 1 and Theorem 1 only hold for discrete spaces X . However,

using the discretization technique introduced in Reference 25, these

results can be extended to continuous spaces that are compact and

convex. The main added assumption is that the kernel function k x,x0ð Þ
must be chosen such that it ensures the following high probability

bounds on the derivatives of f for some constants a,b>0
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Pr sup
x � X

∂f xð Þ
∂xi

���� ����> L� 

≤ ae� L=bð Þ2 , 8i¼1,…,p,8L> 0: ð14Þ

Whenever this condition holds, the results in Lemma 1 and Theorem 1

can be generalized to any compact and convex set X � 0, r½ �p by

enlarging the exploration constant

βt ¼2log
2π2t2

3α

� �
þ2plog t2pbrlog

1
2 4pa=αð Þ

� �
: ð15Þ

To the best of our knowledge, these results have not yet been

extended to arbitrary nonconvex sets. However, this may not pose a

challenge in practice since the choices of βt are generally known to be

conservative.31 In the case studies in Section 5, we select βt¼
β0plog 2tð Þ to capture the dominant dependence of the exploration

constant on t and p. A typical value for β0 is 0.1. An interesting direc-

tion for future work includes establishing a more robust way to select

βtf gt≥1 for specific applications.

4.2 | Estimation of GP hyperparameters

The results in Lemma 1 and Theorem 1 assume that the hyper-

parameters Ψ,σεf g of the GP prior for f are known exactly. Since this

is often not true in practice, we rely on the maximum likelihood esti-

mation (MLE) framework to determine the optimal hyperparameters

Ψ ?
t ,σ

?
ε

	 

that, at every iteration t, maximize the log-likelihood

ℒt Ψ,σεð Þ.14

Ψ ?
t ,σ

?
ε,t

	 

� argmax

Ψ,σε
ℒt Ψ,σεð Þ¼ log p ytjXt,Ψ,σεð Þð Þ: ð16Þ

Based on the GP prior, the measured data vector yt must be distrib-

uted according to a multivariate Gaussian distribution of the follow-

ing form

yt �N 0,Σt Ψ,σεð Þð Þ, Σt Ψ,σεð Þ½ �ij¼ k xi ,xjjΨ
� �þσ2ε δij, 8i, j� 1,…,tf g:

ð17Þ

Using this representation, an analytical expression for the log-

likelihood function can be derived as

ℒt Ψ,σεð Þ¼�yΤt Σ�1t yt�
1
2
log det Σtð Þð Þ� p

2
log 2πð Þ: ð18Þ

The optimization problem (16) is a nonlinear program that can be

solved using gradient-based methods (e.g., IPOPT32) since (18) is a

smooth, differentiable function. To ensure the optimizer does not get

stuck in a local solution, it is useful to “warm-start” the local solver

with the best solution found from a heuristic global optimization

method such as the DIRECT solver.33 Notice that the “warm-start”
approach will introduce an additional step into Algorithm 1 that could

be somewhat computationally expensive depending on the size of the

optimization (16). A simple way to reduce the computational cost

associated with hyperparameter estimation is to update the hyper-

parameters of the GP model only periodically, instead of at every iter-

ation. In this work, we exclusively use the Python package GPy to

train and make predictions with GP models.34

4.3 | Minimax optimization for lcbt�1

Our analysis in Section 3, assumed that we could exactly optimize

the acquisition functions defined in terms of the lower and upper

confidence bounds in Equations (8) and (9). The maximization prob-

lem (9) resembles the sub-problem that arises in the standard BO,

suggesting that the same basic principles can be leveraged to

develop a practical solution method for the ARBO Algorithm 1.

Here, we propose to use a combination of derivative-free search

with a local gradient-based solver for the min-max optimization (8)

at each itertation. Note that since lcbt�1 θ,δð Þ may be nonconvex with

respect to θ and nonconcave with respect to δ, we cannot use tradi-

tional alternating gradient descent-ascent methods, as they may not

even locally converge.35

The proposed approach partially exploits the differentiability of

lcbt�1 θ,δð Þ. Let us denote the optimal objective value for the inner

maximization problem as gt�1 θð Þ¼maxδ � Δlcbt�1 θ,δð Þ. We can then

equivalently formulate Equation (8) as

min
θ � Θ

gt�1 θð Þ, ð19Þ

where gt�1 is a black-box function that can only be evaluated by call-

ing an internal algorithm to approximate gt�1 θð Þ for any choice of

θ�Θ. Since, for any fixed θ, lcbt�1 θ,δð Þ is a smooth function whose

derivatives can be efficiently computed, we can rely on gradient-

based solvers (e.g., the well-known L-BFGS-B algorithm36) to

quickly converge to a local optimum. Since we need a good esti-

mate of the global solution for the inner maximization, we need

some type of globalization strategy. One approach is to apply a

random multi-start for several δ points, with the largest converged

objective value being returned as our best approximation to gt�1 θð Þ.
The initial guess can be obtained by randomly sampling Δ or by com-

puting a large number of random samples of δ to evaluate lcbt�1 θ,δð Þ
with θ fixed, and choose the ones that lead to the highest lcbt�1 θ,δð Þ
in order to warm start the local solver. We then treat Equation (19) as

a black-box optimization problem that can be solved with any number

of available derivative-free optimization methods. In this work, we

rely on BOBYQA,37,38 which is a local trust region-based approach,

but various derivative-free algorithms can be generally applied.39 We

again rely on a random multi-start procedure to protect against local

solutions for this outer minimization problem; however, since gt�1 is

fairly expensive to evaluate, we must carefully select the number of

repeats to ensure a solution can be found in a reasonable amount

of time.
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5 | CASE STUDIES

In this section, we demonstrate the performance of the ARBO algo-

rithm on two problems. The first case study is an illustrative example

that is meant to showcase several implementation details of Algo-

rithm 1. Since the exact knowledge of the function and its min-max

solution is available, we can directly compute the key performance

assessment measures, such as the simple robust-regret, in the illustra-

tive example. The second case study focuses on a challenging NMPC

auto-tuning problem. Since this auto-tuning problem involves a

nonlinear plant simulator, we do not have exact knowledge of the true

solution and thus cannot use simple robust-regret as our performance

measure. Instead, we evaluate the solution quality directly in terms of

the closed-loop performance and constraint satisfaction profiles. The

main goal of this section is to show that ARBO can more reliably find

high-performance tuning parameters with significantly fewer closed-

loop simulations than alternative methods.

5.1 | Illustrative example

Consider a problem in the form of Equation (1), with the following

analytic expression for f

f θ,δð Þ¼ sin θδð Þþ
ffiffiffi
δ
p

θ2�0:5θ, ð20Þ

where Θ¼ �1,2½ � is the feasible set of decision variable and Δ¼ 2,4½ �
is the feasible set of the uncertainty. Throughout this section,

Equation (20) is unknown to any of the black-box algorithms, and is

only used for assessing the regret-based performance measures. Fig-

ure 1 shows a plot of f θ,δ ið Þ� �
versus θ for a large number of random

samples δ ið Þ �Δ, with the worst-case function g θð Þ¼maxδ � Δf θ,δð Þ
shown with a black dashed line. From this plot, we can see that

θ ? ¼�0:3573, which corresponds to an optimal minimax objective

value of f ? ¼�0:2961.
For this illustrative problem, we can identify the globally optimal solu-

tion in the domain of interest, thus the regret metrics become readily

available for assessing the convergence of the proposed algorithm. There-

fore, we use the simple robust-regret SδT as our metric since we aim to

identify this robust solution in as few iterations as possible. Theorem 1

highlights the importance of the βt sequence within Algorithm 1, as

this is the main tool used to navigate the exploitation-exploration tra-

deoff in the joint θ,δf g space. To better illustrate this point, we com-

pare ARBO to a purely exploitative approach, namely a Gaussian

process-based robust optimization (GP-RO) approach. In GP-RO, we

completely ignore the variance information provided by the GP model

for f θ,δð Þ and, instead, sample θ¼ argminθ � Θmaxδ � Δμt�1 θ,δð Þ and

δt¼ argmaxδ � Δμt�1 θt,δð Þ. Similarly, for the recommendation process,

we rely only on the mean function, that is, θt ? is returned

with t ? ¼ argmint � 1,…,Tf gmaxδ � Δμt�1 θt,δð Þ.
It is well-known that determining the hyperparameters of GP

models, as discussed in Section 4, can be unreliable for very small

datasets. Thus, as opposed to starting Algorithm 1 from

iteration 1, it is usually preferred to select the first N0 points uni-

formly at random in any BO procedure to ensure a high-degree of

exploration initially.40 In this illustrative problem, we select N0¼
p2�1 random points before running Algorithm 1. Since the simple

robust-regret is a function of these randomly selected initial points, SδT
itself is a random quantity, so that showing results for a single initiali-

zation may not be informative. Instead, we repeated both the ARBO

and GP-RO methods Nr times (under the same random seeds) to con-

struct a sample average estimate for the expected simple robust-

regret, that is,

 SδT
	 


≈
1
Nr

XNr

i¼1
Sδ, ið ÞT , ð21Þ

where Sδ, ið ÞT denotes the simple robust-regret for the ith run of the

algorithm starting from the ith set of N0 random initial points, while

Nr ¼10. Since this estimate is constructed from a finite number of

samples, we also report estimated confidence intervals computed as

1.96 times the standard deviation divided by the square root of the

number of repeats (also known as the standard error formula).

The simple robust-regret plots for both ARBO and GP-RO are

shown in Figure 2, with the estimated sample average and

corresponding confidence intervals on the left and the individual sam-

ple paths Sδ, ið ÞT for all i� 1,…,Nrf g shown on the right. We clearly see

that ARBO consistently converges to the true robust global optimum,

within a small tolerance compared to the true f ? , for all considered

initial points. This leads to  SδT
	 


≈0 using fewer than 15 function

evaluations. GP-RO, on the other hand, shows considerably worse

performance for the individual sample paths as well as the sample

average. Figure 2B is particularly informative, as the GP-RO algorithm

makes a little to no progress for the entire 30 allotted function evalua-

tions in several different runs. This behavior is not unexpected to

occur in algorithms that lack any degree of exploration—here, there is

F IGURE 1 Objective function plots for various values of the
uncertain parameter δ. The star symbol denotes the true minimax
solution, while the vertical blue line represents the best
recommended solution discovered by ARBO. The black dashed line
represents the point-wise worst-case f while the collection of light-
blue lines, represented as a “tube,” shows the function evaluated for
1000 random realizations of δ
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no clear incentive for GP-RO to sample in unexplored regions of the

Θ�Δ space.

To provide additional insights into the improved performance of

ARBO over GP-RO, we show the lower confidence bound contour

plots for various iterations of a single run of ARBO in Figure 3. We

observe that in early iterations, Figure 3A, the lower confidence

bound attains relatively high values uniformly in most of the Θ�Δ

space, since most of the space is unexplored. As more of the samples

suggested by ARBO are incorporated, shown as the light blue dots,

we see that the lower confidence bound is able to filter out regions of

the space that are not likely to be near the global minimax solution

(e.g., ARBO no longer samples near θ¼2 after it sees large values

there). In the later iterations, Figure 3B,C, we observe that the queried

points start to form a pattern. The ARBO algorithm samples in a

region around θ�, while the proposed points also start converging to

worst-case value for δ.

Figure 3D shows the point-wise absolute error between the true

function f θ,δð Þ and the mean value of the GP approximation of the

objective in the final iteration. As expected, the GP provides a very

good approximation of the unknown true function in a large region

around the global minimax solution denoted by a star, where the error

approaches to zero. Nevertheless, the GP provides an optimistic pre-

diction of f θ,δð Þ elsewhere and, in particular, for θ >1. Since this opti-

mistic prediction is still worse than our known, tested evaluation

(we have already queried some points in the regions that are unlikely

to contain the global optimum), we can adaptively exclude regions of

our search space without wasting the computationally expensive sam-

ples. This highlights a fundamentally important point in BO: it is easier

(i.e., fewer samples are needed) to find a globally optimal solution than

building a globally accurate surrogate model. Additionally, this is the

key missing component in GP-RO, which can be interpreted as ARBO

with βt¼0, as the mean predictions alone do not posses enough

information about the quality of the predictions. As such, GP-RO can

lead to repeated evaluations at the same uninformative points. More-

over, the gray circles in Figure 3D show the evolution of the rec-

ommended optimum based on the last step of Algorithm 1, which

closely follows the iterative generation of recommended queried

points.

F IGURE 2 The simple robust-regret
for ARBO (blue lines) and GP-RO (red
lines). The runs are repeated 10 times and
the average simple robust-regret is shown
along with the 95% confidence intervals
in (A). Individual simple robust-regret
sample paths for different uncertainty
realizations are shown in (B)

F IGURE 3 (A)–(C) Contour plots
showing the convergence of ARBO. The
contour plots show the lower confidence
bound based on the current GP iteration,
which guides the selection of the queried
θ. The sequence of optimal points to be

queried θt,δtf g is superimposed (light-blue
circles), showing the convergence pattern.
(D) Point-wise mismatch between the true
function and the mean of the GP
approximation at the final iteration
(contour C) and the sequence of
recommended optimal points (circles)
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5.2 | NMPC auto-tuning

After demonstrating the practical implementation and important theo-

retical results of ARBO on the illustrative example, we now use ARBO

for auto-tuning of an NMPC controller using a benchmark bioreactor

problem.

5.2.1 | Bioreactor model

We consider the continuous bioreactor problem presented in Refer-

ence 41. The dynamics of the bioreactor can be modeled by a set of

three nonlinear ordinary differential equations given by

_X tð Þ¼�D tð ÞX tð Þþμ tð ÞX tð Þ, X 0ð Þ¼X0, ð22aÞ

_S tð Þ¼D tð Þ Sf tð Þ�S tð Þð Þ� 1
YX=S

μ tð ÞX tð Þ, S 0ð Þ¼ S0, ð22bÞ

_P tð Þ¼�D tð ÞP tð Þþ αμ tð Þþβð ÞX tð Þ, P 0ð Þ¼P0, ð22cÞ

where X tð Þ, S tð Þ, and P tð Þ denote the biomass, substrate, and product

concentration (units of g/L), respectively, with initial conditions

X0¼0:3 g=L, S0¼0:2g=L, and P0¼0g=L; D tð Þ is the dilution rate

(units of h�1); Sf tð Þ is concentration of substrate in the feed (units of

g/L); YX=S is the cell-mass yield (units of g/g); μ tð Þ is the specific

growth rate (units of h�1); and α and β are parameters related to the

product yield. The specific growth rate is assumed to follow a modi-

fied Monod kinetic law that takes into account both substrate and

product inhibition

μ tð Þ¼
μmax 1� P tð Þ

Pm

� �
S tð Þ

KmþS tð Þþ S2 tð Þ
Ki

: ð23Þ

We consider μmax and Pm to be time-invariant uncertainties in the

plant simulator, as explored in several previous case studies.42,43 Here,

we assume that δ¼ μmax,Pmð Þ�Δ¼ 0:75,1:35½ �hr�1� 1:25,1:75½ �g=L.
The rest of the model parameters are assumed to be constant and are

listed in Table 1.

The states of the bioreactor model (22) are given by

z tð Þ¼ X tð Þ,S tð Þ,P tð Þð Þ, while u tð Þ¼ D tð Þ,Sf tð Þð Þ denote the two

manipulated inputs. As such, we can write (22) in the following state-

space representation

_z tð Þ¼ℱ z tð Þ,u tð Þ,δð Þ, z 0ð Þ¼ z0, ð24Þ

where ℱ :ℝ3�ℝ2�ℝ2!ℝ3 is a function that represents the dynam-

ics of the bioreactor in Equations (22) and (23). The control objective

is to maximize the amount of product extracted from the bioreactor

over the process time tf ¼6 h, while satisfying minimum and maxi-

mum constraints on the biomass concentration. We can generally

denote such state (or path) constraints as G z tð Þ,u tð Þð Þ≤0, which

reduce to the following in this case study

G z tð Þ,u tð Þð Þ¼ XLB�X tð Þ, X tð Þ�XUB, S tð Þ�SUB½ �≤0, ð25Þ

where XLB¼0:285g=L and XUB¼0:385g=L are the lower and upper

bounds on the biomass concentration, respectively, while SUB¼
15g=L is an upper bound on the substrate concentration. The manipu-

lated inputs must also satisfy hard input constraints u tð Þ�¼
0:1,1½ �h�1� 10,20½ �g=L. The manipulated inputs are updated every

δt¼0:1 h in the simulation, such that each closed-loop simulation

consists of a total of Nsim¼60 simulation steps.

5.2.2 | Control-relevant model and NMPC
formulation

Although a dynamic model of the bioreactor is available here (i.e., we

have access to ℱ), this is not always the case in practice. Furthermore,

even when plant simulators are available, they may be excessively

complex and computationally costly to use for MPC design and imple-

mentation. Thus, a more practical approach is often to construct a

control-relevant model via system identification using plant simulation

data or real-plant data. Here, we used a residual neural network44 to

learn a flow-map function representing the system dynamics. In partic-

ular, we learned a transition function eℱ zk ,ukð Þ that can be applied

recursively to predict the forward evolution of the states

zkþ1¼ eℱ zk ,ukð Þ ð26Þ

from some initial condition z0 given an input sequence. The weight

and bias parameters of the neural network representing eℱ are trained

using simulation data from the plant simulator described in

Section 5.2.1. We only collect data for the nominal parameter values

μmax¼1:0h�1 and Pm¼1:5g=L, though one could treat the unknown

parameters as additional inputs to the model.

A residual neural network with three layers, 20 nodes per layer,

and the Swish activation45 function was used to represent eℱ in

Equation (26). The training was efficiently carried out using Ten-

sorflow via the Keras API.46 Standard best practices regarding the

selection of batch size, weight/bias initialization, and stochastic gradient

descent optimizer settings were utilized. As such, not only this case

study considers time-invariant parameter uncertainty in the plant

TABLE 1 Known parameters of the bioreactor model

Fixed parameters Values Units

YX=S 0.2 g/g

α 2.5 g/g

β 0.8 h�1

Km 1.2 g/L

Ki 20 g/L

10 of 15 PAULSON ET AL.



simulator, but also plant-model mismatch with respect to the control-

relevant model used for the NMPC design.

Given the above-described control-relevant model and control

objective , the NMPC problem is formulated as

min
zijk ,uijk ,εijk

XN�1
i¼0 ℒ zijk ,uijk

� �þρ k εijkk1,

s:t: ziþ1jk ¼ eℱ zijk ,uijk
� �

, 8i¼0,…,N�1,

G zijk ,uijk
� �þθ ≤ εijk , 8i¼0,…,N�1,

εijk ≥0, 8i¼0,…,N�1,

uijk �, 8i¼0,…,N�1,

z0jk ¼ z tkð Þ,

ð27Þ

where N is the prediction horizon; zijk and uijk are the predicted state

and inputs i steps ahead of current time k; z tkð Þ is the measured state

at time tk (from the plant simulator); ℒ zijk ,uijk
� �¼�VDiPiδt is the

stage cost with reactor volume V¼10L; εijk are slack variables for the

state constraints; ρ is a large penalty weight to penalize state con-

straint violations; and θ�Θ¼ 0,0:1½ �2 are the tunable backoff parame-

ters that can be selected to improve the constraint handling ability of

NMPC.47 Note the stage cost is defined as the negative of the amount of

product extracted from the bioreactor over each δt period; the negative

arises since we want to maximize product. Let u ?
0jk z tkð Þ,θð Þ denote the

first element of the solution to Equation (27). We can then define the

closed-loop system as the combination of Equation (24) and the

NMPC law

u tkð Þ¼ u ?
0jk z tkð Þ,θð Þ, ð28Þ

where the control inputs are constant during each time interval

tk ,tkþ1½ Þ, 8k� 0,…,Nsim�1f g. We solve the NMPC problem using

IPOPT with all required derivatives computed via the CasADi auto-

matic differentiation package.32,48

5.2.3 | Formulation of auto-tuning problem

Given the closed-loop simulation described in Section 5.2.2, we for-

mulate the auto-tuning problem as selecting backoffs θ�Θ such that

the worst-case mass of product (with respect to uncertainties δ�Δ) is

maximized while the constraints (25) are not (significantly) violated.

We denote the objective function of the auto-tuning problem by

ϕ θ,δð Þ. To formulate the auto-tuning problem as in (1), we must select

ϕ θ,δð Þ to be a weighted combination of productivity and constraint

violations. Thus, we represent the overall closed-loop performance as

follows

ϕ θ,δð Þ¼
XNsim

k¼1
ℒ z tkð Þ,u tkð Þð Þþw k G z tkð Þ,u tkð Þð Þ½ �þk1, ð29Þ

where a½ �þ ¼max a,0f g denotes the element-wise positive part opera-

tor and w¼20 is a weight parameter chosen to have a significant pen-

alty associated with constraint violations.

5.2.4 | Results and discussion

We compare the performance of ARBO and GP-RO for NMPC

auto-tuning under uncertainty. We allocate a maximum number of

50 iterations for both of these robust BO algorithms. We use Latin

Hypercube Sampling49 to generate the first 15 samples in Θ�Δ to

ensure sufficient initial coverage of the search space; the same ini-

tial samples are used for both algorithms. There are two factors

that mainly determine the overall evolution of querying and rec-

ommended points. These include the initialization of the algorithm,

that is, the initial samples that construct the GP, and the discovery

of the of true optimal solutions in the robust BO problems. Note

that both ARBO and GP-RO involve the solution of one nested

(step 3 of Algorithm 1), one simple (step 4) and a sequence of sim-

ple (step 8) optimization problems, which, albeit relatively computa-

tionally inexpensive, may lead to incorrect solutions if the used

local solvers are “trapped” in local minima. Therefore, to examine

the consistency of ARBO, we repeat the optimization procedure

Nr ¼5 times.

From examining the sequence of recommended optimum values,

we observe a similar behavior to the illustrative problem; ARBO con-

sistently explores the decision variables space Θ while GP-RO

F IGURE 4 Histograms of the closed-loop performance ϕ θ,δð Þ given in Equation (29) established under 100 realizations of the parameter
uncertainties in the plant simulator for the cases of (A) NMPC with no-backoff, θ0ð Þ; (B) NMPC auto-tuned with ARBO, θ�ARBO

� �
; and (C) NMPC

auto-tuned with GP-RO, θ�GP-RO
� �
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recommendations do not update in several cases. To this end, we ana-

lyze the closed-loop performance for the final recommended point of

the ARBO and GP-RO algorithms by evaluating f θt ? ,δ
ið Þ� �	 
Ns

i¼1 at

Ns¼150 LHS-based sampled uncertainty values δ ið Þ �Δ. The results

are directly compared with the corresponding performance when a

nominal value for the constraint backoffs (i.e., θ0¼ 0,0½ � is used. Note

that in this analysis we use all performance samples that were discov-

ered by varying the final recommended point of ARBO and GP-RO

among the five replicates. The resulting histograms are shown in

Figure 4. Here, we show the relative frequency since 150 samples are

used for the nominal case, while the histograms for ARBO and GP-RO

are based on 750 samples (150 samples for 5 trials). The comparison

with the nominal case, in which the backoffs are set to zero, is pro-

vided to better highlight the advantages of auto-tuning. As seen from

Figure 4, the estimated worst-case total cost for ARBO is significantly

lower than that for the nominal case and GP-RO. This trend is

followed across the entire distributions as, on average, ARBO dis-

covers better solutions than the nominal case and GP-RO. It is worth

noting that the solution found with ARBO does result in slightly

higher nominal performance cost than the zero backoff case, which is

TABLE 2 Auto-tuning performance of ARBO and GP-RO across 5 trials

Worst-case performance Final recommended θ Final worst δ

Trial ARBO GP-RO ARBO GP-RO ARBO GP-RO

1 13.11 11.98 (1�10�1, 7:8�10�2) (0, 5:4�10�2) (0.75, 1.25) (0.75, 1.75)

2 11.65 41.28 (0, 6:5�10�2) (0, 1�10�1) (1.35, 1.25) (1.35, 1.25)

3 13.09 22.86 (5:6�10�2, 5�10�2) (1�10�1, 1�10�1) (1.33, 1.56) (1.35, 1.25)

4 12.44 19.19 (0�10�1, 7:2�10�2) (6:2�10�3, 8:6�10�2) (0.75, 1.75) (1.17, 1.66)

5 12.13 12.73 (1:4�10�2, 3:8�10�2) (2�10�2, 6:8�10�2) (1.35, 1.25) (1.35, 1.75)

F IGURE 5 Closed-loop profiles of product, biomass and substrate concentrations for 150 realizations of parameter uncertainties in the plant
simulator for the cases of NMPC with no-backoff (A–C), NMPC auto-tuned with ARBO (D–F), and NMPC auto-tuned with GP-RO (G–I)
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the price to pay for the added robustness achieved with the minimax

formulation of the auto-tuning problem.

The worst-case performance of the closed-loop system is quanti-

fied and listed in Table 2. As a point of reference, the worst-case

closed-loop performance for the nominal case is 36:57. From Table 2,

we can observe that the worst-case performance of ARBO is consis-

tently lower than that of the nominal case and GP-RO, except in trial

1 where the performance costs are comparable while the final rec-

ommended point is quite different. Although the GP-RO algorithm

provides significantly sub-optimal results compared to ARBO, intro-

ducing some degree of constraint backoff generally improves the

worst-case performance due to enhanced constraint satisfaction.

However, in trial 2, the GP-RO algorithm is not able to encounter a

candidate worst-case solution that leads to a performance cost even

higher than the nominal case. Note that the worst-case costs are quite

similar in ARBO, even when the final recommended points θ are not

very close in the Θ space. This suggests a high degree of nonlinearity

of the performance function in the joint design-uncertainty space.

To obtain more insight into effect of backoff parameters, Figure 5

shows the closed-loop state profiles for the three cases considered in

Figure 4. For ARBO, we show the profiles corresponding to trial 1,

wheras for GP-RO the profiles correspond to trial 2, which are the

respective trial for which the algorithms yield the higher worst-case

cost. From Figure 5B, it is evident that in the no-backoff case, a large

violation of XLB occurs at later instances, thus incurring a large penalty

in the performance cost. This issue is alleviated by using the optimal

backoffs calculated by ARBO, which lead to significantly less violation

of the lower biomass bound XLB, while not sacrificing on the amount

of product obtained throughout the process, as seen from the concen-

trations of product in Figure 5A–D. It is important to note that achiev-

ing this behavior requires careful simultaneous tuning of θ1 and θ2, as

we need to allow for some level of XLB and XUB violation to obtain a

large enough amount of product, while staying within the desired

bounds for biomass concentration. It would be difficult for a practi-

tioner to infer this careful balance without running an impractically

large number of closed-loop simulations. In fact, ARBO was able to

uncover this desired balance in an automated fashion using 65 total

simulations (15 initial simulations for the GP construction and 50 iter-

ations for BO); this is fewer than the 150 simulations we used to esti-

mate the worst-case performance for the final recommended point.

Lastly, we also observe that GP-RO attempts to improve the closed-

loop behavior of the system by decreasing the amount of XLB viola-

tions as compared to ARBO; however, it does so by introducing more

significant violations of XUB.

6 | CONCLUSIONS AND FUTURE WORK

We have presented a robust Bayesian optimization (BO) method for

auto-tuning of arbitrary complex control structures using a “high-
fidelity” plant simulator with significant time-invariant uncertainties.

The proposed adversarially robust BO (ARBO) method uses a probabi-

listic GP surrogate model to jointly describe the effect of the tuning

parameters and plant model uncertainties on the closed-loop perfor-

mance. The GP model allows for using an alternating confidence-

bound procedure to simultaneously select the next candidate tuning

and uncertainty parameter realizations. As such, ARBO requires only

one (expensive) closed-loop simulation in each iteration, as compared

to alternative robust BO approaches to auto-tuning that rely on vastly

more closed-loop simulations in each iteration. Our results on two

simulation case studies demonstrate the advantages of the confidence

bound-based procedure of ARBO in systematically realizing a tradeoff

between the exploration and exploitation of the design-uncertainty

space relative to GP surrogate-based robust optimization that lacks an

exploration mechanism.

It should be noted that there remain several interesting direc-

tions for future work to further improve the efficiency of ARBO on

relevant robust controller tuning problems. One important issue is

related to the well-known challenges associated with applying BO

in high-dimensional spaces. Since ARBO relies on GPs that jointly

learn the decision variable and uncertainty space, it is expected to

encounter difficulties in systems that either have many uncer-

tainties and/or many tunable parameters. A second challenge is

related to the implementation of ARBO and, more specifically, the

selection of optimization methods that are capable of solving the

inner/outer optimization problems including those required in the

recommendation procedure. The nested form of the minimax prob-

lem makes it critical to ensure that these inner/outer problems are

solved to near global optimality. In this paper, we propose several

strategies for practical implementation of these components of

ARBO, but substantial improvements can likely be made in the effi-

ciency of such methods . Finally, other practical aspects such as an

optimal selection strategy for the exploration constant, convergence

criteria, and the incorporation of more complex non-Gaussian noise

models into ARBO should be further examined.
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ENDNOTES

* We refer to the process simulator as “high-fidelity” to denote the fact

that it can be a computationally-expensive model, such as a multiscale

model, built from a collection of software codes/packages.
† This can be easily achieved by normalizing the data before training, as

discussed in Reference 27.
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