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There is a growing demand for large-market natural and biotechnological products driven

by  shifting consumer preferences in food and calls for decentralized vaccine and medication

production capabilities. The current paradigm of bioreactor-based biomanufacturing faces

difficulties of scalability and a high entry barrier of capital intensity and workforce spe-

cialization. Field-grown plant-based manufacturing, as an inexpensive and readily scalable

platform, is a promising strategy to meet this call. Despite some successes in field-grown

bioproducts manufacturing, concerns, including process variability, have largely stymied

adoption. Here we report on the development of techno-economic modeling coupled with

Monte Carlo simulation as an effective tool to quantify, and mitigate, the impact of vari-

ation in field-grown plant-based manufacturing on profitability-related (internal rate of

return, cost of goods) and process performance (product purity, annual throughput) forecast

variables. In the base case, we observe 80.8% certainty of meeting all forecast variable spec-

ifications, defined generically to represent those of a high-volume food-grade commodity

product. We  observe an internal rate of return (with a selling price of $2275/kg bioproduct) as

low  as 10.7% and as high as 47.9% across facility scenarios. We  also demonstrate optimiza-

tion under uncertainty in a facility retrofitting to find a profitability-optimal chromatography

column diameter of 1.2 m.

© 2021 The Authors. Published by Elsevier B.V. on behalf of Institution of Chemical

Engineers. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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the breath of medical, agricultural, and industrial products is
yet unproven. Biotechnology, as a set of emerging industries
within which is contained high-profit margin of production,
has been traditionally averse to manufacturing platform risks
for established product categories such as biopharmaceuti-
cals. This in turn generates vulnerabilities as one considers
projections of demand for biologically-derived products, such
as biopolymers (Van Beilen and Poirier, 2008), plant-based pro-
tein (Ismail et al., 2020) and oils (Kojima et al., 2016), natural
sugar alternatives (Sylvetsky and Rother, 2016), and biophar-
maceuticals (Kesik-Brodacka, 2018), increasing several orders
of magnitude while sometimes also demanding several orders
of magnitude shorter product cycle time. In a recent perspec-
tive, we  highlighted these vulnerabilities and proposed one
solution of how to tackle both the immediate need to address
COVID-19 diagnostic reagent shortages and crop surpluses
using plant molecular farming (McDonald and Holtz, 2020).

Plant molecular farming, the production of high-value
natural or recombinant products in plants, has been her-
alded as an accessible platform for expanding manufacturing
globalization with lower infrastructure costs and workforce
specialization than traditional bioreactor-based systems (Ma
et al., 2003). Stainless steel bioreactors with advanced control
systems for a suite of online process variables are replaced
by plants, within which a portion of the control systems are
absorbed by the natural supracellular regulation systems.

The most advanced efforts in commercialization of
molecular farming currently utilize infrastructure including
controlled environment facilities containing artificial light-
ing, controlled atmospheric composition and flow rate, and
hydroponic systems to produce recombinant products with
demands of 10’s to 1000’s of kilograms per year (Holtz et al.,
2015). However, even the complexity and cost of indoor plant
cultivation may be prohibitive to broaching larger market
products and generally meeting a growing global need across
different biotechnological product classes.

Molecular farming of recombinant products in an outdoor
agricultural field setting has been an alluring and aspirational
target for as long as molecular farming has been an area of
research. Despite some early successes with companies like
Large Scale Biology Corporation (Pogue et al., 2002), and con-
tinued successes of companies like Ventria Biosciences (Chen
et al., 2018; Laffan et al., 2011; Nandi et al., 2005), molecular
farming of recombinant products in an outdoor agricultural
field setting has faced setbacks including regulatory backlash
from Prodigene’s pharmaceutical crop mishandling (Kermode
and Jiang, 2018) and from mixed public perception, in part
as it is lumped with genetically modified food crops (Ma
et al., 2005). It is prudent to note that the regulation of trans-
genic crops outdoors has matured significantly, as exemplified
by the clear language in the U.S. Department of Agriculture
(USDA) Animal and Plant Health Inspection Service Biotech-
nology Regulatory Services and comfort of the agency to drop
requirements for annual USDA permit renewal in some cases
where the transgenic lines are declared safe after years of
evaluation. Recent publications on molecular farming in an
outdoor agricultural field setting highlight the significance of
the pitfalls, but also detail a path forward into commercial
success driven by the low cost, production scale, and acces-
sibility (Ma  et al., 2013; McDonald and Holtz, 2020; McNulty
et al., 2020).

Perhaps the largest blocker to development of outdoor

molecular farming is the crop variation, both intra- and inter-
batch, that arises from exposure to natural soil and climate
variation and is perceived as a concern for consistency of prod-
uct critical quality attributes (Moustafa et al., 2016). If concerns
of product consistency are alleviated, it is likely that there will
be a subsequent need to also address the intertwined concern
of crop yield fluctuation (Iizumi and Ramankutty, 2016).

In manufacturing products, such as commodity goods, for
which ensuring consistent supply can be critical, the evalua-
tion of risks associated with meeting target throughput and
variation in product cost of manufacturing should be evalu-
ated and communicated to stakeholders to complement the
decision-making process when assessing the feasibility of pro-
cesses under uncertainty and strategic planning.

All biomanufacturing introduces a degree of variation in
the production. There is a myriad of external factors that
can influence production rate and product quality. For exam-
ple, consider that in biopharmaceutical production, where
the product attributes are highly controlled to ensure effi-
cacy and safety to the patient, there are some raw material
changes (e.g., source of certain culture media components)
can be made by the vendor without the biopharmaceutical
manufacturer being notified. Manufacturers and regulators
understand the potential variation, and the product is vali-
dated with process and product ranges to accommodate this
uncertainty. Outdoor plant molecular farming is no different
in this respect, but there are concerns that the magnitude or
unpredictability of variation is greater than can be absorbed
by either downstream processing or a given threshold of an
attribute within the quality target product profile. However,
to our knowledge, there has not been in-depth evaluation of
crop variation that quantifies and propagates the impact to
key performance metrics such as cost of goods sold, facility
throughput, and product critical quality attributes (e.g., prod-
uct purity).

Earlier studies have established the concept of uncertainty
quantification using techno-economic models to capture
production variation of biomanufacturing processes. These
investigations have focused primarily on biofuel (Batan et al.,
2016; Zhuang et al., 2007) and biopharmaceutical (Martagan
et al., 2018; Papavasileiou et al., 2007) production systems
with limitations of coarse techno-economic models and/or
limited uncertainty quantification analyses. Notably rigorous,
the uncertainty analysis of penicillin V production using fer-
mentation processes includes a detailed model and robust
inclusion of uncertainty parameters (Biwer et al., 2005). How-
ever, this report does lack scenario analysis and optimization
under uncertainty, both of which are important methodology
considerations for plant molecular farming-based manufac-
turing.

Kelada and coauthors recently published the first techno-
economic analysis of plant molecular farming to manufacture
a target commodity product at a rate of 50,000 kg per year
(Kelada et al., 2021). In this analysis, the authors simulate a
larger production-scale facility than has been commercially
realized to date to provide perspective on the feasibility and
benefits of plant molecular farming for large demand prod-
ucts. The findings indicate that outdoor field cultivation is one
manufacturing strategy to reduce costs compared with the
traditional indoor cultivation to meet the price points of com-
modity and industrial products. In the work by Kelada and in
all other molecular farming techno-economic studies to date,
a fixed and constant production rate is assumed in designing
and sizing the facility.
Other molecular farming techno-economic studies have
explored technical and economic viability of primarily indoor
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roduction of monoclonal antibodies (Nandi et al., 2016),
ntiviral proteins (Alam et al., 2018), biodefense agents (Tusé
t al., 2014), and antimicrobial proteins (McNulty et al., 2020),
lthough the latter two studies did compare indoor growth to
utdoor field growth scenarios but at much smaller production
cales.

Here we  present an introductory investigation into uncer-
ainty quantification in outdoor field-grown plant-made
roducts. We use Monte Carlo-based simulation to augment

 techno-economic model of an ultra-large-scale manufactur-
ng facility producing 50 MT  per year of 98% pure commodity
roduct. The primary objective of this work is to present a
oundational tool for quantifying uncertainty to reduce stake-
older concerns and to optimize outdoor field-grown plant
olecular farming facilities.

.  Materials  and  methods

.1.  Process  simulation

his work builds on our recently published techno-economic
odel of ultra-large-scale field-grown production of the

ecombinant sweetener, thaumatin II, in ethanol-inducible
ransgenic Nicotiana tabacum using a process simulation
ool, SuperPro Designer® version 10 build 7 (Intelligen,
nc.), and Microsoft Excel-based calculations. The pub-
ished model, as well as the modified model used for this
ork, is publicly available at http://mcdonald-nandi.ech.
cdavis.edu/tools/techno-economics/. A free trial ver-
ion of SuperPro Designer (http://www.intelligen.
om/demo.html) can be used to view the model and run
he simulation. The previously published model has been
eneralized for the production of high-value recombinant
roteins, the upstream and downstream processing process
owsheets have been merged, and the process scheduling is
efined by rated throughput of the equipment when appli-
able (Fig. 1). The generalized model can be readily adapted
or production of natural protein products by omission of the
ractor spraying procedure, which serves as the induction of
thanol-inducible transgenic production.

Our previous work did not include profitability analysis.
or this analysis, we  selected three selling prices of $1138/kg,
2275/kg (base case), and $4225/kg based the cost of goods
old of our previously reported base case techno-economic
odel ($591/kg, without depreciation) (Kelada et al., 2021)

nd on previously reported average of gross margins from
994 to 2005 for an aggregate of companies qualified as
eneric pharmaceuticals (48%), brand-name pharmaceuticals
74%), and biotechnology (86%) (Basu et al., 2008). Lower gross

argins, as are typical for other relevant sectors (agriculture
11%); food processing (26%); specialty chemicals (31%)), were
lso considered but not included within scope (retrieved
rom New York University’s Stern School of Business;
ttp://pages.stern.nyu.edu/∼adamodar/New Home Page/data
le/margin.html; data compiled from Bloomberg, Morn-

ngstar, Capital IQ and Compustat). The selling prices selected
or analysis in this study are further supported by prof-
tability analysis in Kelada et al. (2021) which reports that
ecombinantly produced sweetener product selling prices of
3000/kg–$4500/kg, depending on the achievable reduction in

ugar at a sugar cost of $0.30/kg, were shown to be potentially
ost saving for use in sweetened soft drinks.
2.2.  Uncertainty  quantification

We  combine Monte Carlo-based stochastic simulation anal-
ysis using Oracle® Crystal Ball with deterministic techno-
economic process simulation in SuperPro Designer. We
have written custom Visual Basic for Applications (VBA)
scripts in Microsoft Excel to interact with SuperPro Designer
using SuperPro Designer’s built-in Component Object Mod-
ule library, which is expressly designed for this purpose. The
Crystal Ball plug-in to Microsoft Excel generates stochastic
input parameter values based on a pre-determined proba-
bility distribution and the VBA script then sets the SuperPro
Designer facility model performance accordingly and records
the results of selected forecast variables (e.g., cost of goods
sold, annual throughput).

The facility model equipment is sized for maximal equip-
ment utilization according to the static average base case
values. As such, equipment throughput and capacity are
exceeded for input parameter values that result in higher
stream volume or product mass than the base case model.
In these instances, SuperPro Designer triggers a warning or
error notification, but regardless still sends the full process
stream (including any capacity exceeding that of the equip-
ment) to the next unit operation by default. We implemented
a simple Microsoft Excel-based algorithm to correct the facility
model in these cases. For exceeded stream volume capacity,
biomass from field growth yield, which dictates stream vol-
ume,  is reduced from the stochastically determined value to
a value corresponding to the “effective” field growth yield,
defined as the maximal yield that the facility can process
based on equipment capacity. Physically, this is designed to be
representative of plowing excess biomass back into the fields
for soil enrichment. For exceeded product mass capacity, as
only chromatography performance is assumed to be sensitive
to this value, it is assumed that there will be negligible impact
to chromatography binding capacity and that excess will be
diverted to the flow-through, resulting in a reduction of the
stochastically determined cation exchange chromatography
(CEX) recovery of product value to a value corresponding to the
“effective” CEX recovery of product, defined as the maximal
recovery that the resin binding capacity can accommodate.

One known disadvantage of Monte Carlo-based simula-
tion is the high trial number needed to closely approximate
the distributions. We chose to run each uncertainty anal-
ysis for 20,000 trials. Profitability-related forecast variables
include 20,000 trials for each plot, while process-related vari-
ables include 60,000 trials (combined 20,000 trials for each of
the three selling prices analyzed for profitability-related fore-
casts). Each trial returns the facility forecast variables values
calculated for a full facility lifetime of 25 years. For process per-
formance forecast variables, each trial can also be interpreted
on a batch-basis, while profitability forecast variables would
need to be calculated differently for a batch-basis interpre-
tation, rather than facility lifetime, of trial results. We were
able to run each set of 20,000 trials of combined stochastic-
deterministic evaluation on a personal computing machine
on the order of several hours running time.

2.3.  Input  parameter  uncertainty

We  selected a set of input parameters for uncertainty anal-
ysis (Table 1). Input parameters were screened and selected

on the basis of known uncertainty, techno-economic impact,
and relevance to outdoor field growth. Supporting information

http://mcdonald-nandi.ech.ucdavis.edu/tools/techno-economics/
http://mcdonald-nandi.ech.ucdavis.edu/tools/techno-economics/
http://www.intelligen.com/demo.html
http://www.intelligen.com/demo.html
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Fig. 1 – Process flowsheet for the field-grown production of recombinant proteins in Nicotiana tabacum in the SuperPro
 the 
Designer® model. Process flowsheet has been adapted from

for determination of the input parameter probability distri-
butions, and graphical depictions of these distributions, are
included in the ‘Data in Brief’ supplement to this paper. Prob-
ability distributions are defined such that the mean is equal
to the static value assigned in the base case model.

2.4.  Input  parameter  correlations

Input parameter values are by default generated independent

of each other using random selection from the given probabil-
ity distribution. However, parameter-parameter interactions
work of Kelada et al. (2021).

and correlations are to be expected during manufacturing.
We  consider several parameter correlations in the uncertainty
quantification analysis by defining Pearson correlation coeffi-
cients in Crystal Ball to establish a degree of linear relationship
between two variables (Table 2). The Pearson correlation coef-
ficients used in the model are primarily based on the reported
findings in Knödler et al. (2019). We also assume on the
basis of working process knowledge that there is a mod-
erate positive correlation (r = 0.7) between product loss and
impurities removal in the plate and frame filtration procedure

P-11.
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Table 1 – Input parameters selected for uncertainty quantification and the defined probability distributions.

Variable Procedure Base case
value

Distribution Variation [Range]

Field growth yield
(% maximal*/100)
*132 g FW/plant

P-2  0.76 scaled beta alpha = 2.57, beta = 4.80 [0.63, 1.0]

Field growth time
(days)

P-2  34.83 triangular likeliest = 34.83, ±5% likeliest
[33.09, 36.57]

Expression level
(g product/kg FW)

P-4  1.5 logistic mean = 1.5, scale = 0.08 [0.95. 2.05]

Harvesting time
(hours)

P-5  8 scaled beta alpha = 1, beta = 8 [4, 40]

P&F filtration removal
(% product lost)

P-11 5.15 normal mean = 5.15, SD = 0.52 [3.55, 6.75]

P&F filtration removal
(% impurities removed)

P-11  5.15 normal mean = 5.15, SD = 0.52 [3.55, 6.75]

P&F filtration flux
(L/m2 h)

P-11  180 triangular likeliest = 180, ±20% likeliest [144,
216]

P&F filtration removal
(% product lost)

P-13 5.43 normal mean = 5.43, SD = 0.54 [3.75, 7.11]

P&F filtration removal
(% impurities removed)

P-13  95.0 normal mean = 95.0, SD = 0.54 [93.32, 96.68]

P&F filtration flux
(L/m2 h)

P-13  200 triangular likeliest = 200, ±20% likeliest [160,
240]

P&F filtration removal of product
(% product lost)

P-17 1.72 normal mean = 1.72, SD = 0.17 [1.08, 2.26]

P&F filtration removal of impurities
(% impurities removed)

P-17  1.72 normal mean = 1.72, SD = 0.17 [1.08, 2.26]

P&F filtration flux
(L/m2 h)

P-17  30 triangular likeliest = 30, ±20% likeliest [24, 36]

UF/DF filtration flux
(L/m2 h)

P-19  30 triangular likeliest = 30, ±20% likeliest [24, 36]

CEX recovery
(% product recovered)

P-20 88.5 triangular ±10% base case [80, 97]

CEX recovery
(% impurities recovered)

P-20  5.0 triangular ±10% base case [4.5, 5.5]

UF/DF filtration flux
(L/m2 h)

P-22  40 triangular likeliest = 40, ±20% likeliest [32, 48]

FW, fresh weight; P&F, plate and frame; UF/DF, ultrafiltration/diafiltration.

Table 2 – Pearson correlation coefficients.

Field growth
yield (P-2)

Field growth
time (P-2)

Expression
level (P-4)

P&F removal of
product (P-11)

P&F removal of
impurities (P-11)

CEX recovery of
product (P-20)

Field growth yield (P-2) – r = 0.8842 r = −0.6321
Field growth time (P-2) r = 0.8842 –
Expression level (P-4) – r = 0.6042
P&F removal of product

(P-11)
r  = −0.6321 – r = 0.7 r = 0.9432

P&F removal of
impurities (P-11)

r  = 0.7 –

CEX recovery of product r  = 0.6042 r = 0.9432 –

2
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(P-20)

.5.  Forecast  variable  selection

e  selected a set of forecast variables to capture the value
n uncertainty quantification as a tool to identify parameters
hat are likely to impact the bottom line and to optimize field-
rown plant-made product facilities. Table 3 provides a list of
ll forecast variables measured in the uncertainty quantifica-
ion analysis. The cost of goods sold (COGS) forecast variable
s calculated with depreciation included.

.6.  Facility  model  analyses
ensitivity analysis is generated by Crystal Ball for each fore-
ast variable using simulation run data. A rank correlation
coefficient is calculated between every forecast and assump-
tion. Percent contribution to variance is calculated from the
rank correlation coefficient. Correlation among the input
parameters was not included while considering the Monte
Carlo-based simulations runs for sensitivity analysis.

The influence of equipment capacity on forecast variable
outputs is investigated in facility oversizing analysis. The
equipment of the base case facility model is sized to max-
imize equipment utilization for the nominal static average
input parameters. Here we investigate the impact of oversiz-
ing equipment (base case = 0% oversize) to reduce or eliminate
probability of process stream waste for above average through-

put trials on techno-economics. A facility model with 100%
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Table 3 – The selected forecast variables, a brief justification of their inclusion/significance, and hypothesized desired
output ranges are included for the sake of illustrating richness of analysis capabilities.

Forecast Variable Justification Desired Output

Internal rate of return,
after tax
(% discount rate)

Represents a measure of the project profitability based on
future cash flows in present dollar value, while taking in
consideration the initial investment, operating costs, revenues,
and taxes.

≥30%

Cost of goods sold
($/kg product)

Represents the production cost and serves as a key
determinant of profitability.

≤$850/kg  product

Annual throughput
(kg product/year)

Represents the product supply and can inform supply chain
management and market penetration strategies.

≥4.0  × 104 kg/year
≤6.5 × 104 kg/year

Product purity
(% purity)

Represents the product quality and can inform manufacturing
strategies to ensure standards for the product critical quality

≥97.5%
attributes are met.

oversizing is defined as a scenario with equipment sized to
process the maximum stream volume possible within the
selected input parameter ranges. Simulations were performed
at 0% (base case), 25%, 50%, 75%, and 100% oversizing. The fol-
lowing equipment were re-sized for this analysis: heat tank
(V-101), evaporator (EV-101), tangential flow filtration hold
tank (V-102), CEX column (C-101). Details of the re-sizing are
included in the ‘Data in Brief’ supplement to this paper. All
other equipment were capable of processing the maximum
stream volume without re-sizing using a rated throughput.

The optimization of the CEX column size under input
uncertainty is investigated as an optimization scenario. The
base case scenario CEX column size, which was calculated
using static average values, is used as the optimization start-
ing point. We fixed the bed height and allow the CEX resin
volume to vary with bed diameter for CEX size optimization.
Oracle Crystal Ball’s OptQuest tool was used to determine the
CEX diameter that maximizes the mean value IRR of simula-
tions of 20,000 trials in the range of 0.7–1.7 m diameter (base
case = 1.2 m)  discretized in 0.01 m increments.

3.  Results

3.1.  Uncertainty  quantification

Individual forecast variable uncertainty quantification is
shown by histogram, cumulative probability distribution, and
top input parameter contributions to variance in Fig. 2. Expres-
sion level (P-4), field growth yield (P-2), field growth time (P-2),
P&F removal of product (P-13), and CEX recovery of prod-
uct (P-20) have been generally identified as top contributors
to variance for the selected set of forecast variables ana-
lyzed. Additional information on the forecast variable outputs,
including graphical assessment of normality and a list of con-
tributions to variance for all input parameters, is included in
the ‘Data in Brief’ supplement to this paper.

Relationships between the forecast variables are shown in
Fig. 3, highlighting the interplay between the process perfor-
mance and profitability forecast variables. As can be generally
expected, high Annual Throughput and low COGS are associ-
ated with high internal rate of return (IRR). The density plots
(Fig. 3, e–h) show a negative skewness for all three process
performance forecast variables. Based on the desired forecast
target ranges listed in Table 3, we project the manufacturing,
as given by the model simulation, meeting desired COGS out-
put specifications with 86.5% certainty (17,299/20,000 trials),
annual throughput with 93.7% certainty (18,747/20,000 trials),

product purity with 92.6% certainty (18,529/20,000 trials), IRR
with 82.5% certainty (16,490/20,000 trials), and meeting all four
output specifications with 80.8% certainty (16,161/20,000 tri-
als).

3.2.  Facility  oversizing

An effective assumption constrained by equipment capacity is
observed at lower extents of facility oversizing for field growth
yield and CEX recovery of product, as shown in Fig. 4. There
is a pronounced difference between the effective field growth
yield and the governing field growth yield probability distribu-
tions under the 0% and 25% equipment oversize scenarios, the
differences being statistically significant from all other equip-
ment oversize scenarios. The hypotheses being tested here are
about the equality of the means of the two probability distribu-
tions, and the tests used are the standard two-sample t-tests
with two-sided alternatives, at level of significance  ̨ = 0.05.
Means of these two probability distributions under 50%, 75%,
and 100% oversizing scenarios were not statistically different.
Subsequent statistical evaluation of the probability distribu-
tions of these scenarios illustrated that the 50% scenario
output is not borne of an equal distribution to that of the 75%
and 100% oversizing scenarios (tests for equality of pairs of
probability distributions are performed using the two-sample
Kolmogorov–Smirnov test, at significance level  ̨ = 0.05). The
difference between the mean effective CEX recovery of prod-
uct for the 0% oversizing scenario and all other scenarios is
statistically significant. Means, and more  generally, the dis-
tributions, under the 25%, 50%, 75%, and 100% oversizing
scenarios were not statistically different. Additional details of
the two-sample statistical analyses are included in the ‘Data
in Brief’ supplement to this paper.

Individual forecast variable uncertainty quantification is
shown across the equipment oversize scenarios by histogram
and scatter plots of the mean values in Fig. 5. The prof-
itability of the facility model, as given by IRR, is inversely
related to extent of equipment oversizing. The mean IRR val-
ues for the different scenarios are significantly different. We
postulate that this can be largely explained by the mono-
tonically increasing mean value of COGS (the mean COGS
value for each scenario is also statistically distinct). The mean
value of annual throughput also increases with extent of
equipment oversizing up until 50% oversizing, whereupon
additional oversizing does not contribute a statistically signif-
icant difference in the mean (or distribution) of throughput.
For perspective on the relative cost of increased throughput
for these scenarios, consider that the mean value of the 100%
equipment oversizing scenario results in 3.85% greater annual

throughput and 21.4% greater COGS than the 0% scenario val-
ues. In contrast, product purity is more  comparable across
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Fig. 2 – Probability distributions and top five assumption contributions to forecast variance for internal rate of return (a, b),
cost of goods sold (c, d), annual throughput (e, f), and product purity (g, h).

Fig. 3 – Relationship between the forecast parameter outputs as a function of internal rate of return and data density.
Contour plots display overall and pairwise relationships (a–d). A 3D-scatter plot displays the overall relationship (e) and
b

s
t
i

s
s
i
(

inned scattered plots display pairwise relationships (f–h).

cenarios; only in the 0% oversizing scenario, the mean and
he distribution of purity are statistically distinct from those
n the other scenarios.

A comparison of cost breakdowns for the equipment over-
izing scenarios is shown in Fig. 6. Consumables are the most
ensitive cost items to the extent of equipment oversizing,

ncreasing the relative contribution to operating expenditures
OPEX) by ∼20% from the 0% to 100% oversizing scenario. The
UF/DF process section is the most sensitive to extent of equip-
ment oversizing, increasing relative contribution to OPEX by
∼15% from the 0% to 100% oversizing scenario. This is pri-
marily due to the contribution of the CEX procedure. The ratio
of upstream-to-downstream OPEX generally decreases with
extent of equipment oversizing, while the capital intensity,

the ratio of OPEX to capital expenditures (CAPEX), gener-
ally increases. This is consistent with the generally accepted
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Fig. 4 – Impact on input variables due to extent of equipment oversizing is displayed using histograms, scatter plots of the
mean simulation values, and box plots for field growth yield (a, b, c) and CEX recovery of product (d, e, f). Error bars
represent the 95% confidence interval of the mean.

Fig. 5 – Impact on forecast variables due to extent of equipment oversizing is displayed using histograms and scatter plots
of the mean simulation values for internal rate of return after tax (a, b), annual throughput (c, d), cost of goods sold (e, f), and
product purity (g, h). Error bars represent the 95% confidence interval of the mean.
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Fig. 6 – A comparison of cost breakdowns and equipment oversizing of the facility for the mean simulation values shown
by (a) cost item, (b) process section, (c) total upstream contribution, and (d) the ratio between operating and capital
expenditures. Data points represent the cost breakdowns of the simulation trials with the mean internal rate of return,
while error bars represent those of the minimum and maximum internal rate of return. QC, quality control; QA, quality
assurance; UF/DF, ultrafiltration/diafiltration; OPEX, operating ex

Fig. 7 – Uncertainty-based optimization of cation exchange
chromatography sizing in the 0% oversize scenario set to
maximize the mean internal rate of return given the
assumed input parameter probability distributions. The
mean internal rate of return is calculated using 20,000
simulation trials at each diameter value tested. Diameter
r
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ange of 0.7–1.7 m is discretized in 0.01 m increments.

otion that downstream processing is higher capital intensity
han upstream processing.

.3.  Optimization  scenario:  chromatography  retrofit

ere, we  demonstrate how the process simulation model rep-
esenting an existing facility can be used to aid in a retrofitting
rocess. We suppose that the facility, represented by the base
ase scenario (0% oversizing), is fixed and fully constructed
xcept for the CEX chromatography step, which is anticipated
o be added to the floor as the facility manufacturing switches
o a new target protein product. In this case, the process sim-
lation model can be used to optimize the sizing of the CEX
hromatography step in the context of the otherwise existing
acility.

The results of the CEX optimization are show in Fig. 7. The
ptimal value was determined to be a diameter of 1.2 m,  which

s consistent with the value in the base case scenario.

.  Discussion
he uncertainty quantification analysis of techno-economic
rocess simulation in this work presents a range of potential
penditures; CAPEX, capital expenditures.

technical and business insights that can be gained for produc-
tion of natural and recombinant products in biotechnology
manufacturing. In this work, we have specifically focused
on field-grown plant molecular farming as a high-priority
target to benefit from the quantification and management
of uncertainty in driving commercial manufacturing. Field-
grown molecular farming is a critical manufacturing platform
for key commercial products including artemisinin for malaria
treatment (Su and Miller, 2015), vinca alkaloids for multiple
health indications including diabetes and cancer (Moudi et al.,
2013), and stevia as a food sweetener (Singh et al., 2019), and
provides distinct advantages in the future of biotechnologi-
cal integration in a range of global markets. Addressing the
uncertainty associated with plant-based production is one
promising strategy to approach supply stabilization and to
develop compelling plant-based manufacturing schemes.

4.1.  Positioning  plant  molecular  farming  with  outdoor
field cultivation

A recent paper on scaling-up plant molecular farming does
an excellent job in summarizing blockers and opportunities in
the industry from the perspective of key stakeholders work-
ing on the Pharma-Factory project (https://pharmafactory.org)
and the Newcotiana project (https://newcotiana.org) (Menary
et al., 2020). Plant molecular farming has faced a slower tech-
nological maturation compared to traditional biotechnology
manufacturing platforms. This has been attributed to a vari-
ety of factors – from being constrained to existing regulatory
frameworks that are not amenable to assessing plant-based
product manufacturing (Sparrow et al., 2013, 2007), to a lack of
landscape-level pressures like policy driving sustainable man-
ufacturing (Faye and Gomord, 2010), to being locked out of
the market from past ventures whose failures are indepen-
dent of the technology potential/value (Kermode and Jiang,
2018), to a lack of public acceptance of genetically modified
crops (Pei and Schmidt, 2019). Plant molecular farming has
responded to these factors by focusing on reducing public
concerns, seeking niche-innovation, and establishing legit-
imacy through positive discourse. The industry is working
to reduce public concern of contamination using non-food
status crops (e.g., Nicotiana benthamiana) (Bally et al., 2018;
Tremblay et al., 2010), manufacturing in indoor controlled
environment facilities, and employing non-germline editing

transient expression platforms (Holtz et al., 2015; Pogue et al.,
2010; Spiegel et al., 2018). Niche-innovations with plant molec-

https://pharmafactory.org
https://newcotiana.org
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ular farming to aid technological development outside of the
normal market pressures focuses on spaces including orphan
diseases, emergency treatments, and inexpensive vaccines
(Kermode and Jiang, 2018). And finally, legitimation of plant
molecular farming clusters around comparisons to traditional
biotechnology manufacturing platforms that emphasize the
safety advantages, low cost, sustainability or scalability (Buyel,
2018; Moustafa et al., 2016; Yao et al., 2015) and the oppor-
tunities for low- and middle-income countries with minimal
existing pharmaceutical production capacity and expertise
(Murad  et al., 2020; Tsekoa et al., 2020).

These strategies have served well to move plant molec-
ular farming towards technological maturation (Fischer and
Buyel, 2020). However, the direction of plant molecular farm-
ing technological development borne of these strategies can
appear to be at cross-purpose with itself. For example, the
response to public concerns emphasizes indoor cultivation
and transient expression platforms, while legitimation-facing
strategies emphasize low cost, simple scalability, and acces-
sibility, all of which may be better suited to outdoor field
cultivation and transgenic expression platforms. Addition-
ally, consider that while niche-innovation in plant molecular
farming has usually targeted small to moderate market size
products to break into the commercial space, there are new
and promising food and industrial markets well-suited to
plant molecular farming with considerably larger market sizes
and considerably smaller gross margins that would be greatly
benefited by outdoor field cultivation; in fact, perhaps the most
alluring feature of plant molecular farming is its potential to
manufacture high-value protein products at a larger scale than
is feasible with traditional culture-based systems (Buyel et al.,
2017).

In recent years, the plant molecular farming community
has renewed investigation of glass greenhouse cultivation
as an in-between manufacturing platform that provides
adequate containment and control with minimal cost and
infrastructure complexity (Knödler et al., 2019; Ma et al., 2015).
However, the complexity of greenhouse cultivation may still
prohibit the pursuit of ultra-large-scale manufacturing for
commodity goods that demand lean manufacturing costs. In
our perspective, it is critical to re-visit outdoor field cultivation
as a platform to enable plant molecular farming to re-position
for larger food, industrial, and pharmaceutical markets.

4.2.  Quantifying  uncertainty  in  facility  performance

Here it is important to re-iterate that the probability distri-
butions selected are not based on commercial-scale data and
are primarily based on working process knowledge, however
the uncertainty framework developed, coupled with detailed
process modelling, can be generally applied to assess com-
mercial risks of plant molecular farming. Thus, the results are
not necessarily representative of an existing or prospective
outdoor field-based facility, but may instead be leveraged in
development, improvement, or monitoring of such projects.

Our investigation of uncertainty in IRR shows that, given
the selected probability distribution assumptions, this facility
(in the 0% oversize scenario) is calculated to produce a mean
IRR (selling price: $2275/kg) of 33.8%, a 6.63% decrease from the
static average base case of 36.2%. Expression level was found
to be the major contributor (75.6%) to IRR variance. The 100%
oversize scenario decreased the mean IRR by 24.9%–27.2%

due to the imbalance of the more  greatly increased capital
investment costs and lesser increase in revenue at the selling
prices, and thus profit margins, established in this analysis.
Additionally, the distribution is increasingly platykurtic (i.e.,
flat-shaped, or thinner tailed) with extent of oversizing and
inversely so with the selling price.

The simulation resulted in a mean throughput of 48,046 kg
product/year, a 3.88% decrease from the static average base
case of 49,983 kg product/year. Annual throughput spans from
58.8% capacity (28,248 kg product/year) up to 124% capacity
(59,467 kg product/year) of the mean. Expression level was
found to be the major contributor (75.6%) to annual through-
put variance. The 100% oversize scenario increased the mean
throughput by 3.85% (49,893 kg product/year) to match the
base case static average. This intuitive shift is a result of the
0% oversizing scenario resulting in over-capacity stream vol-
umes that are accounted for in the 100% oversizing scenario,
thus restoring the effective mean value to that of the governing
distribution mean.

The simulated facility is projected to produce the main
product (including depreciation) at a mean COGS of $762/kg,
an 8.7% increase from the static average base case of $701/kg.
COGS spans as low as 79.8% ($608/kg) and as high as 169%
($1284/kg) of the mean value. Expression level was also the
major contributor (77.1%) to variance in this case. The 100%
oversize scenario results in an increased mean COGS by 21.4%
($925/kg). The quantification of uncertainty in COGS is critical
for understanding which product markets are economically
accessible for a given facility. Conversely, this provides infor-
mation that can be used to inform the target product selling
price.

The simulated facility product purity mean value is equal
to the base case static average of 98.0%. The product purity
ranges from 97.9% lower (95.9%) to 102% higher (99.0%) purity
than the mean value. The plate and frame filtration product
loss was the most significant contributor (at 56.5%) to prod-
uct purity variance. The 100% oversizing scenario resulted in
a mean value equal to the 0% oversizing scenario mean. The
quantification of uncertainty in product purity obtained in this
study shows that there is considerable variation in extent of
purity, which may or may not be problematic for a specific
product, which is also largely dependent on the impurities pro-
file (e.g., variation in native allergen or microbial toxin levels
would present a larger obstacle). Realistically, annual product
purity variation is not particularly useful for designing a facil-
ity. This process performance metric, which in preparation for
an actual facility construction would be split into its meaning-
ful constituents, would be better suited to analysis at a level
of batch-to-batch variation.

4.3.  Batch-to-batch  uncertainty  in  facility  performance

The analysis thus far has focused on uncertainty in the annual
average values for input assumptions. This is representative of
a project planning or preliminary engineering estimate, clas-
sified as level 2 or level 3 in some systems (Petrides et al.,
2019), where design errors are expected to be in the range
of ±20–30%. When the product development and commer-
cialization life cycle is sufficiently advanced, there is greater
value in detailed engineering estimates (classified as a level
4 design estimate). At that juncture, it is probable that the
expected facility performance is better characterized, with
more preliminary data available, and that batch-to-batch vari-
ance may more  appropriately describe the questions around

uncertainty. In these situations, we can treat each process
performance simulation trial result as a single batch output,
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ather than an annual average value. It is important to note
hat the probability distributions for batch-level and annual
verage-level descriptions will most likely be designed using
ifferent sets of assumptions.

For the sake of illustration in comparing annual- to batch-
evel uncertainty in this analysis, we perform a brief exercise
n describing batch-level uncertainty, assuming that the input
ssumptions previously defined for annual-level uncertainty
re instead describing batch-level uncertainty. To understand
he annual facility behavior given batch-level uncertainty, we
andomly group trial outputs into sets whose size corresponds
o the affordable number of batches per year, which is calcu-
ated based on scheduling. Performing such a calculation, the
ange of uncertainty in process performance metric outputs
s much more  controlled, as would be expected; for the 0%
versizing scenario the annual throughput uncertainty spans
3.8–98.3% of the base case static average capacity, COGS
ncertainty spans 106.0–111.3% of the base case static aver-
ge cost, and product purity uncertainty spans 99.9–100.1% of
he base case static average level.

Future analysis of batch-to-batch variance and uncer-
ainty has the potential to play an instrumental role in
iding development of processing strategies to that take in to
ccount noisy quality attributes of the processing input mate-
ial (i.e., field-grown crop) and translate that into a product

eeting well-defined quality attributes. This is of particu-
ar importance for outdoor molecular farming, for which the
nput material noise may be expected to be more  variable
han other production platforms. One particularly valuable
spect of batch-to-batch variance research would be to
nclude scenario analyses of lot pooling considerations of the
acility.

.4.  Managing  uncertainty  in  facility  performance

n this work we  considered management of uncertainty by
nvestigating the impact of equipment oversizing on select
rocess performance metrics. It is clear that the 0% oversiz-

ng scenario is the most profitable, based on the IRR results.
n large part, this can be attributed to the shape of the
eld growth yield probability distribution used. The positive
kewness dictates that the oversizing captured a smaller frac-
ion of the field growth yield integral for a given increment
bove 0% oversizing (i.e., smaller throughput return for a
iven capital investment). For this particular model, there was
o statistically significant increase in throughput past 50%
versizing; the additional 75% and 100% oversizing scenarios
ontributed additional costs without a significant return on
hroughput. However, it is important to point out that facil-
ty design is a complex process. In reality, the target industry
nd business strategy of the company may dictate a design
ased on transient market penetration strategies, anticipated
caling, and/or other opportunities, to name a few considera-
ions.

The other aspect of this work aimed to manage uncertainty
n facility performance is the optimization of CEX chromatog-
aphy column sizing in a facility retrofitting exercise. What
e found in this example is that equipment utilization, which
as by default maximized in the base case column size, was

he economic driver in this scenario. Maximization of equip-
ent utilization is a well-established heuristic in a facility

esign for manufacturing with relatively small perturbations

n demand. In other facility simulations and input assump-
ions (including the balance between product selling price
and capital investments), the optimal column sizing may have
instead reflected those different balances in facility dynamics
with a larger size, in the case of valuable products and posi-
tively skewed throughput distributions, or smaller size, in the
inverse situations.

Valuable future works to investigate the impact, and miti-
gation, of uncertainty in forecast variables include exploring
commonly employed manufacturing strategies that tend to
absorb localized fluctuations. In outdoor field cultivation
this includes consideration of multi-plot or multi-site pro-
duction and plant tissue silaging (Hamada et al., 2006).
Multi-site manufacturing considerations would involve an
optimization of the balance of production scales between
multiple facilities based on transient performance prob-
ability distributions. It will also be valuable to augment
uncertainty quantification of plant molecular farming man-
ufacturing with more  granulized and transient scheduling
information to understand the impact to supply chain
logistics and solutions to overcome them (e.g., propagat-
ing the impact of manufacturing shutdown periods and lot
failure).

Perhaps most relevant to the advancement of outdoor field
cultivation for plant molecular farming would be to consider
upcoming and future manufacturing strategies to reduce vari-
ation. Technological advances in areas such as seed coating
(Rocha et al., 2019), precision agriculture (Finger et al., 2019),
and robotic agricultural systems (King, 2017) are all positioned
on the horizon to drastically reduce variation and improve
yield of outdoor field cultivation. It will be critical for the plant
molecular farming community to leverage these innovations.

From the perspective of downstream processing, consid-
eration of lot pooling – the combination/pooling of multiple
batches into a larger lot size, often implemented to reduce
quality control costs or improve supply chain logistics (Avis
and Wu, 1996) – and the impact on output variation is an
important area of investigation.

In summary, this work has aimed to provide the plant
molecular farming community with contextual motivation
and a framework and toolkit to further explore outdoor field
cultivation through the lens of uncertainty quantification
and management in manufacturing process simulation to
drive future experimentation and inform business decisions.
This was presented in the form of a deterministic Super-
Pro Designer-based techno-economic facility model integrated
with a stochastic Monte Carlo-based simulation to propagate
the impact of noisy manufacturing inputs through to forecast
variable outputs. Scenario analysis and optimization aspects
provide direct examples of how this toolkit can be used in
decision making.
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