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17.1 Introduction

Photobiologically active radiation refers to photons between 280 and 800 nm (Dörr et al.,
2020), as these photons can drive photosynthesis (a process that turns water and CO2 into
oxygen and carbohydrates) and/or excite a suite of photoreceptors that modulate plant develop-
ment. This biologically active region can be broadly split into six regions: UV-B (280e320 nm),
UV-A (320e400 nm), blue (400e500 nm), green (500e600 nm), red (600e700 nm), and far-red
(700e800 nm).

Sunlight and conventional electric light sources (e.g., high-pressure sodium and metal
halide lamps) provide minimal opportunity to manipulate the light spectrum. Recent devel-
opments in high efficiency narrow spectrum light-emitting diodes (LEDs) enable precise con-
trol of plant growth and development by creating ‘light recipes.’ In this chapter we discuss
general principles of plant spectral responses, focusing on photosynthetic efficiency, plant
shape, and secondary metabolite production.

17.2 Photosynthesis overview

Plants evolved under broad spectrum sunlightdthe ultimate energy source for all life on
the Earth. About half of the photons in solar radiation that reaches the Earth’s surface falls
into the biologically active region, with peak output in the range that is visible to the human
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eye (approximately 400e700 nm). For photosynthesis, photons must be of sufficient energy
for photochemical reactions but must not contain too much energy to cause damage to the
photosynthetic apparatus. Coincidently (but perhaps not surprisingly), photons in the visible
region of about 400e700 nm fit this requirement and are known as photosynthetically active
radiation (PAR).

Photosynthesis is dependent on the amount of photons plants receive, which is commonly
quantified in two ways: (1) the instantaneous photosynthetic photon flux density (PPFD;
mmol m�2 s�1), and (2) the cumulative number of photons received over a daydcalled the
daily light integral (DLI; mol m�2 d�1). Crop yield shows a strong linear correlation with
the total amount of light intercepted by the plant canopy both in the field under sunlight (Gif-
ford et al., 1984; Monteith, 1977) and in indoor agriculture under LEDs (Zhen and Bugbee,
2020a). However, photons of different wavelengths do not drive photosynthesis with equal
efficiency (expressed as moles of CO2 fixed per mole of photons absorbed). This was known
from pioneering studies on photosynthesis under monochromatic light (Emerson and Lewis,
1943; Hoover, 1937). Classic studies by McCree (1971) and Inada (1976) found that red
photons are most efficient for photosynthesis, followed by green and blue photons, while
photosynthetic efficiency decreases significantly on the edges of the PAR region
(Fig. 17.1C). The results from these classic studies should be interpreted with caution because
the studies were conducted on single leaves under low light due to technical limitations at the
time. More recent studies examine the photosynthetic responses at canopy level under higher
light, which we discuss in detail below.

17.3 Morphology overview

Plants are sessile organisms that must acclimate to their local growing environment. Among
the environmental factors, light plays a central role in their development. Some characteristics
of the light environment are more constant such as modifications caused by an overhead can-
opy, while others fluctuate substantially on a timescale of seconds (e.g., cloud cover or leaf
movement in the wind). Additionally, there are seasonal changes in the PPFD and photoperiod
(or daylength). Plants possess a suite of photoreceptors (proteins coupled with a photon
absorbing chromophore) that are sensitive to specific photons. Plants sense the light signals
(i.e., changes in PPFD, spectrum, and photoperiod) via their photoreceptors and modify their
development accordingly. These modifications can include a number of key changes over a
plant’s life cycle, including seed germination, plant shape, phytochemical composition, biomass
allocation, flowering, and seed-setting (Kendrick and Kronenberg, 1994).

Under natural environments, changes in light spectral quality primarily occur between full
sun versus vegetative shade. Table 17.1 provides some typical values of the spectral compo-
sition of sunlight and shade light. Compared to full sunlight, shade light is notably enriched
in far-red, which is caused by filtration of most of the photons in the PAR region by the top
layers of a plant canopy for photosynthesis. These shifts in spectral ratios are thus accompa-
nied by a significant overall decrease in total photon flux density that can reach 95% or
greater (Casal, 2012). Shade conditions can simply be the presence of neighboring plants
that reflect a small amount of additional far-red (Ballare et al., 1987). Species tend to respond
differently to shade or changes in spectral quality, such as rapid elongation of stems in order
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to outgrow neighbors or expansion of leaves (often making the leaves thinner at the same
time) to increase light capture (Gommers et al., 2013). The response of a specific species is
dependent on the type of environment under which it evolved, for example, forest under-
stories or open fields.

For morphological development, these broad categories can be grouped into photons
that make plants more compact (UV-B, UV-A, blue, and red) or less compact (green and
far-red). These six categories are admittedly crude, as development is actually dependent
on photoreceptor absorption (Fig. 17.2). For example, a UV-A photon at 330 nm is unlikely

FIGURE 17.1 (A) Absorption coefficients of chlorophylls extracted with diethyl ether, (B) light absorption in
leaves, and (C) spectral effect of photosynthesis. Relative photosynthetic efficiency curves of diverse species are
redrawn from data by McCree, K.J., 1971. The action spectrum, absorptance and quantum yield of photosynthesis in crop
plants. Agric. Meteorol. 9, 191e216.
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to have the same effect on plant growth and development as a UV-A photon at 395 nm.
Likewise, a far-red photon at 730 nm is expected to have a significantly different effect
on development than a far-red photon at 780 nm. Despite this, these coarse categories are
still useful as the peak absorbance of different photoreceptors roughly fall into the specified
photon categories.

There are three well-studied classes of photoreceptors that modulate development. These
are (1) the phytochromes, which have peak absorbance in the red and far-red regions,
although they can absorb from 300 to 800 nm; (2) the cryptochromes, which primarily absorb
in the UV-A, blue, and green regions; and (3) the phototropins, which primarily absorb in the
UV-A and blue regions (Fig. 17.2). Plants also contain other photoreceptors including UV
RESISTANCE LOCUS8 (UVR8), which responds to UV-B photons; and zeitlupes, which
respond to blue/UV-A photons, but these are less well studied (Folta and Carvalho, 2015;
Galvão and Fankhauser, 2015).

17.4 General effects of spectrum

For the remainder of this chapter, we discuss the general effects of the six categories of photons
(UV-B, UV-A, blue, green, red, and far-red) on the photosynthesis and development of crops.
Note that photons below 280 nm (UV-C; 100e280 nm) can be generated with electric lamps,
conventionally with high-pressure mercury lamps and now UV-C LEDs have become available.
These high-energy ionizing photons have germicidal effects and may be applied in short flashes
to stimulate plant resistance to pathogens (Aarrouf and Urban, 2020) and to control branching
and height of ornamental plants (Bridgen, 2016), but they tend to be highly damaging and
can reduce yields (Lee et al., 2014). Their applications in crop cultivation need to be further
studied.

TABLE 17.1 Typical spectral composition of the photobiologically active radiation under full sun and can-
opy shade environments. In addition to the shifts in spectral ratios, both the photosynthetic
photon flux density (PPFD) and biological photon flux density (BPFD) decrease substantially
under shade. Different photon categories are expressed as a percentage of the total biologically
active radiation.

Full sun Vegetation shade

UV-B (280e320 nm) 0.2% 0.1%

UV-A (320e400 nm) 5% 3%

Blue (400e500 nm) 19% 6%

Green (500e600 nm) 25% 10%

Red (600e700 nm) 27% 7%

Far-red (700e800 nm) 24% 74%

PPFD (400e700 nm) 2100 (mmol m�2 s�1) 25 (mmol m�2 s�1)

BPFD (280e800 nm) 3000 (mmol m�2 s�1; 100%) 100 (mmol m�2 s�1; 100%)
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FIGURE 17.2 Absorption coefficients of three major families of photoreceptors that modulate plant development.
(A) Phototropins and zeitlupes. (B) Absorption coefficients for the cytochrome chromophore (FAD) in the oxidized
(FADox) and neutral radical (FADH�) states. (C) Absorption coefficients for the PR and PFR forms of phytochrome.
Straight colored arrows indicate photoreceptor activation or deactivation upon photon absorption and curved black
arrows indicate dark (meaning light-independent) reversion. Dark reversion rate is dependent on the concentration of
oxygen in cryptochrome (Müller and Ahmad, 2011) and on temperature in phytochrome (Klose et al., 2020). (A) Data
from Ahmad, M., Grancher, N., Heil, M., Black, R.C., Giovani, B., Galland, P., Lardemer, D., 2002. Action spectrum for
cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Plant Physiol. 129 (2), 774e785; Salomon, M., Christie,
J.M., Knieb, E., Lempert, U., Briggs, W.R., 2000. Photochemical and mutational analysis of the FMN-binding domains of the
plant blue light receptor, phototropin. Biochemistry 39 (31), 9401e9410; (B) data were kindly provided by Müller, P., Bouly,
J.P., Hitomi, K., Balland, V., Getzoff, E. D., Ritz, T., Brettel, K. (2014). ATP binding turns plant cryptochrome into an efficient
natural photoswitch. Sci. Rep. 4 (1), 1e11 for more detail; (C) curves redrawn from data by Kelly, J.M., Lagarias, J.C., 1985.
Photochemistry of 124-kilodalton Avena phytochrome under constant illumination in vitro. Biochemistry 24 (21), 6003e6010;
Lagarias, J.C., Kelly, J.M., Cyr, K.L., Smith Jr, W.O., 1987. Comparative photochemical analysis of highly purified 124 kilo-
dalton oat and rye phytochromes in vitro. Photochem. Photobiol. 46 (1), 5e13.

17.4 General effects of spectrum 313



17.4.1 UV-B (280e320 nm)

The classification of UV-B photons begins at 280 nm, as this is the shortest wavelength of
photons from the Sun that can penetrate through the Earth’s atmosphere. The long wave-
length cutoffs for UV-B are either based on studies on sunburn (315 nm) or skin cancer
(320 nm) in humans (Kusuma et al., 2020). We use 320 nm since this covers a broader range
of photons that are potentially damaging to plants, but perhaps better metrics are needed for
plant-based responses. It is important to use UV-B with caution as it creates hazardous con-
ditions to both plants and workers.

17.4.1.1 Photosynthesis

UV-B is generally detrimental to photosynthesis and plant growth as it causes damage to
photosynthetic apparatus, primarily photosystem II (Jansen et al., 1998; Tyystjärvi, 2008).
Damages to DNA, proteins (including the key photosynthetic enzyme Rubisco) and cell
membranes often occur under moderate to high intensity UV-B radiation. Exposure to UV-
B can also induce thickening of leaves and cuticle layers, a decrease in chlorophyll content
and an increase in UV-B screening pigments, all of which may further affect photosynthesis
by altering the leaf optical properties and distribution of PAR within the leaves (Bornman
and Vogelmann, 1991).

17.4.1.2 Development

Although UV-B induces damage at high intensities, lower intensity UV-B can act as a bene-
ficial stress (Neugart and Schreiner, 2018), increasing the production of beneficial secondary
metabolites including anthocyanins, phenolics, and flavonoids. These compounds act as ‘sun-
screen,’ absorbing the UV radiation primarily in the epidermal layers before it can damage
the photosystems. Additionally, these compounds have antioxidant properties, scavenging
reactive oxygen species (Jansen et al., 1998). Many of these molecules change the overall
pigmentation of the plant and can promote human health, potentially increasing the value
of the crop (Schreiner et al., 2012).

Even though UV-B may improve crop quality, its application tends to decrease stem and
leaf expansion (Wargent et al., 2009a,b; Yao et al., 2006). Together with the decreases in
photosynthesis, these decreases in leaf area (reduced photon capture) can lead to yield reduc-
tions. The effects of UV-B on both morphology and secondary metabolite synthesis depend
on the background growth light intensities (DLIs), with larger impacts at lower DLIs (Dou
et al., 2019; Warner and Caldwell, 1983).

Many of these responses to UV-B are mediated through the UVR8 photoreceptor, which
regulates the expression of hundreds of genes (Favory et al., 2009), but some UV-B responses
are also mediated by independent mechanisms (Coffey et al., 2017; Wargent et al., 2009a).
Measurement of a transcript downstream of UVR8 activation showed that the action spec-
trum of this photoreceptor drops by about 310 nm (Brown et al., 2009).

Intumescence is a physiological disorder that occurs in certain cultivars of crops (e.g., Max-
ifort tomato) cultivated in greenhouses and plant factories. It manifests as small blisters on
the surface of leaves, and at the microscopic level, these protrusions are caused by cell hyper-
trophy (Williams et al., 2014). Although the cause for this disorder is not well understood,
UV-B has been shown to decrease its severity (Kubota et al., 2017).
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Increased cuticle thickness and changes in phytochemical composition in plants grown
with UV-B may also increase their resistance to fungal pathogens and diseases (Raviv and
Antignus, 2004).

17.4.2 UV-A (320e400 nm)

A commonly used violet LED with a peak at about 405 nm and with 10%e50% of its
output below 400 nm (depending on operating conditions) has sometimes been marketed
as a UV LED (Samuolien _e et al., 2020). LEDs with peaks between 365 and 400 nm can be man-
ufactured with higher efficiency than UV-B LEDs, but the efficiency decreases with
decreasing peak wavelength. Distinctions between longer and shorter wavelength UV-A pho-
tons are important as the effects of UV-A vary considerably with wavelength.

17.4.2.1 Photosynthesis

UV-A photons are of lower energy than UV-B photons and are thus less damaging (Ver-
daguer et al., 2017). Additionally, the longer wavelength UV-A photons can be absorbed by
photosynthetic pigments (chlorophyll and carotenoids) and drive photosynthesis. McCree
(1971) found that photosynthetic efficiency of UV-A photons decreased rapidly with
decreasing wavelength from 400 to 350 nm (Fig. 17.1C). Although, some species (e.g., radish
and sugar beet) were shown to use UV-A photons with relatively high efficiency, and plants
grown in growth chambers without prior UV-A exposure generally used UV-A more effi-
ciently than field grown plants (McCree, 1971). Interestingly, Mantha et al. (2001) showed
that shorter wavelength UV-A photons (peak around 340 nm) can enhance leaf photosyn-
thesis through fluorescence emission of violet, blue, and green photons, which are absorbed
by photosynthetic pigments. This effect is more pronounced under low light situations when
photosynthesis is not light saturated.

Plants accumulate UV-absorbing compounds (notably in the upper epidermis) upon UV
exposure as a photoprotective mechanism. Therefore, both the photosynthetic efficiency
and the potential photoinhibitory effects of UV-A decrease as crops acclimate to UV-A. It
is important to note that there is large variation in species sensitivity to UV radiation
(Fig. 17.1C). From the standpoint of optimizing photosynthetic efficiency, more studies are
needed to better understand whether it is beneficial to include UV-A photons in greenhouses
and indoor agriculture.

17.4.2.2 Development

Plant responses to UV-A photons have been less well studied compared to UV-B, and the
studies thus far have shown both beneficial and detrimental effects. With the continued
development of LED technology, studies in controlled environments are beginning to fill
in the gaps in knowledge regarding the responses to UV-A and the underlying mechanisms
(Verdaguer et al., 2017).

Under sole-source LED light, leaf area was increased by supplementation with UV-A pho-
tons between 365 and 400 nm in both lettuce (Chen et al., 2019) and tomato (Kang et al., 2018;
Khoshimkhujaev et al., 2014). By contrast, other studies have shown no effect of UV-A on
leaf area in cucumber, soybean, and lettuce (Samuolien _e et al., 2020; Yao et al., 2006).
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Supplemental UV-A has also been shown to increase stem length in tomato (Kang et al., 2018),
decrease stem length in soybean (Yao et al., 2006), and have no effect in cucumber (Jeong et al.,
2020; Yao et al., 2006). The effects were similarly inconsistent on fresh and dry mass, either
showing increases (Kang et al., 2018; Lee et al., 2014) or no changes (Jeong et al., 2020;
Li and Kubota, 2009; Samuolien _e et al., 2020). These inconsistencies are not simply explained
by species differences because studies on the same species (e.g., lettuce) have provided
conflicting results (Chen et al., 2019; Li and Kubota, 2009; Samuolien _e et al., 2020). The specific
intensity of both PAR and UV-A likely contributed to the differences.

In addition to altering morphology, UV-A has been shown to contribute to secondary
metabolite production. Mariz-Ponte et al. (2019) found that UV-A, not UV-B, increased flavo-
noids and phenolic concentrations in tomato fruits. UV-A also induces secondary metabolite
production in lettuce (Lee et al., 2014; Li and Kubota, 2009), with higher doses being more
effective (Chen et al., 2019).

Photons from the violet LED (peak at about 405 nm) are at the cusp of photosynthetic
activity (Fig. 17.1) and photoinhibition (Takahashi et al., 2010). In one study these photons
were shown to have no effect on leaf area and yield when applied supplementally
(Samuolien _e et al., 2020).

The UVR8 photoreceptor does not appear to induce responses beyond UV-B, instead the
cryptochromes are most likely involved in responses to UV-A photons (Wade et al., 2001).
The absorbance spectrum for cryptochrome activation (FADox in Fig. 17.2B, described in
further detail below) shows one peak around 350 nm and another peak at about 450 nm,
with a valley between 375 and 425 nm, indicating that longer wavelength UV-A photons
(~375e400 nm) are likely not as effective in regulating plant development compared to
shorter wavelength UV-A and longer wavelength blue photons. The studies discussed in
this section generally use supplementation of UV-A photons between 365 and 400 nm. It is
possible that adding blue photons (around 450 nm) would have had the same or even greater
effect.

17.4.3 Blue (400e500 nm)

17.4.3.1 Photosynthesis

Blue photons are most efficiently absorbed by leaves (Fig. 17.1B) and are often thought to
be needed for efficient photosynthesis due to their role in inducing stomatal opening. Inter-
estingly, studies on the spectral response of photosynthesis found that blue photons tend to
have the lowest photosynthetic efficiency among photons in the PAR region. For example,
McCree (1971) reported that the average photosynthetic efficiency of blue photons was
17%e28% lower than red and green photons in diverse species. Similarly, Hogewoning
et al. (2012) found that the photosynthetic efficiency of blue photons in cucumber was about
30% lower than red photons. In addition to chlorophylls, blue photons are absorbed by non-
photosynthetic pigments (e.g., anthocyanins and flavonoids) as well as photosynthetic carot-
enoids, which transfer excitation energy to chlorophylls with reduced efficiency (Frank and
Cogdell, 1996; Siefermann-Harms, 1985). This largely accounts for the lower photosynthetic
efficiency of blue photons.
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Compared to red and green photons, absorption of blue photons primarily occurs in the
upper cell layers of the leaves at the top of a plant canopy (Vogelmann and Evans, 2002).
This nonuniform light distribution within a plant canopy leads to reduced photosynthetic
efficiency (Melis, 2009). In addition, high-intensity blue light can induce chloroplast move-
ment to the side walls parallel to the light direction (inducing a ‘stacked’ orientation),
causing a decrease in light absorption, and thus a decrease in photosynthetic rate (Haupt
and Scheuerlein, 1990; Kagawa et al., 2001).

It is well known that blue light, often applied as a short pulse, induces fast stomatal
opening (Assmann et al., 1985). A recent study found that when varying the fractions of
red and blue photons, blue lighteinduced stomatal opening minimally enhanced steady-
state photosynthesis and consistently decreased water use efficiency under medium and
high light intensities (Zhen and Bugbee, 2020b). Additional studies are needed to elucidate
the role of blue light in photosynthesis, stomatal regulation, and water use of crops grown
under electric lights, especially if dynamic lighting strategies (e.g., fluctuating light levels
and spectra) are implemented.

17.4.3.2 Development

Blue photons act on three families of photoreceptors to modulate plant development:
cryptochromes, phototropins, and zeitlupes. Cryptochromes and zeitlupes control plant
development through modulation of gene expression, while phototropins act through
association with cell membranes (Galvão and Fankhauser, 2015; Lin, 2000). Responses
mediated by phototropins include phototropism, stomatal opening, chloroplast reorien-
tation, and leaf movement (Christie, 2007). Zeitlupes play a role in flowering (Galvão
and Fankhauser, 2015). The effects of blue photons on photomorphogenesis and second-
ary metabolite production (the focus of this section) are primarily controlled by
cryptochromes.

Many studies conducted in controlled environments have shown that increasing the frac-
tion of blue photons, especially between 10% and 50%, often causes leaf area and stem length
to decrease, thus leading to decreases in yield (Hernández and Kubota, 2016; Kang et al.,
2016; Meng et al., 2019, 2020; Snowden et al., 2016; Son and Oh, 2013, 2015; Wang et al.,
2016). Less commonly, studies have found no effect on yield from increasing the fraction
of blue photons (Li and Kubota, 2009; Snowden et al., 2016).

Because leaf area and yield generally decrease with increasing blue photon fraction, lower
fractions of blue photons may be preferred. However, studies show that growing plants in
the absence of blue photons often lead to low chlorophyll concentrations and excessive
stem elongation (Son and Oh, 2013; Snowden et al., 2016; Yorio et al., 2001). Leaf area and
crop yield in the absence of blue photons have been reported to increase in some species
(Meng et al., 2020; Son and Oh, 2013; Wang et al., 2016) but decrease in others (Hernández
and Kubota, 2016; Snowden et al., 2016; Yorio et al., 2001). Therefore, the decision of whether
or not to completely remove blue photons may be species dependent.

One of the key regulators in flavonoid and anthocyanin synthesis is the enzyme chal-
cone synthase. The expression of this enzyme is partially controlled by cryptochromes
(Wade et al., 2001). Thus, blue photons have been shown to increase the production of sec-
ondary metabolites including phenolics and flavonoids (Li and Kubota, 2009; Son and Oh,
2013, 2015).
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17.4.4 Green (500e600 nm)

17.4.4.1 Photosynthesis

Green photons are often perceived as less efficient for photosynthesis than red and blue
photons, largely due to the minimal absorption of green photons by chlorophylls. This lower
absorption/higher reflectance is what gives leaves their green color. However, chlorophyll
absorption spectra are quantified with extracted pigments in a solvent. Light absorption of
a leaf differs from that of extracted chlorophyll solution because leaf chlorophylls are concen-
trated in chloroplasts (see Fig. 17.1A compared to Fig. 17.1B). This uneven distribution of
chlorophylls within leaf cells flattens the absorption of strongly absorbed red and blue pho-
tons while only marginally reducing absorption of weakly absorbed green photons (also
known as ‘sieve effect’; see Terashima et al. (2009) for more details). On the other hand,
the diffusive nature of plant tissues (light is reflected/scattered at the interfaces of cell walls
and intercellular air spaces) increases the light path length inside the leaf and thus increasing
the overall absorptance of photons, especially green (Vogelmann, 1993). Zhen and Bugbee
(2020c) reported that leaf absorptance of green photons ranged from 77% to 88% for a number
of crop species, including lettuce, spinach, and tomato. In comparison, leaf absorptance of
those species was around 95% in the blue region and 88%e93% in the red region. Thus, it
is a misconception that ‘green leaves do not (efficiently) absorb green photons.’

On the basis of absorbed photons, McCree (1971) found that photosynthetic efficiency of
green photons was 20% higher than blue photons and equivalent to red photons. Note
that the values were determined from the average response of 22 diverse species grown in
growth chambers and the measurements were made at 25 nm intervals under low light con-
ditions. Under high light, strongly absorbed red and blue photons tend to oversaturate upper
cell layers of the leaf while ‘starving’ the bottom leaf cells, resulting in reduced leaf photosyn-
thetic efficiency. Because green photons are not as strongly absorbed by chlorophylls, they
can penetrate deeper into the leaf (and canopy) (Brodersen and Vogelmann, 2010), driving
photosynthesis deep within the leaf (Sun et al., 1998). As a result, green photons may be
more efficient for leaf photosynthesis than red and blue photons when added to high light
(Liu and van Iersel, 2021; Terashima et al., 2009).

At canopy level, the difference in light absorption between green and red (and blue) pho-
tons is expected to be smaller than the differences within a leaf (Paradiso et al., 2011). Further-
more, the more uniform light distribution within the canopy under green photons likely lead
to higher canopy photosynthetic efficiency. Measurements of photosynthetic efficiency at
canopy level will help to further elucidate the value of green photons for photosynthesis
and crop productivity.

17.4.4.2 Development

The past two decades of photobiological studies have revealed a potential role of green
photons in morphogenesis. The flavin adenine dinucleotide (FAD) chromophore embedded
in cryptochrome has three states: FADox, the oxidized state; FADH�, the semireduced neutral
radical state; and FADH�, the fully reduced state. Of these three states, FADH�is the active
form, while FADox and FADH� are both inactive (Ahmad, 2016). FADox absorbs most prom-
inently in the blue region, converting it into active FADH�(Fig. 17.2B). As the active form,
FADH�inhibits stem expansion. The absorption spectrum of FADH�shows a high absorbance
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of green photons, which lead to the inactivation of cryptochrome (to FADH�). Thus, green
photons have been suggested to induce shade avoidance responses by reversing blue
photoneinduced decreases in plant size. A decrease in B:G ratio tends to occur in canopy
shade (Smith et al., 2017). Shade avoidance in response to green has been supported mainly
by studies in Arabidopsis thaliana (Bouly et al., 2007; Zhang et al., 2011).

Because green photons may reverse the effects of blue photons, it may be expected that
increasing the fractions of green photons (while the blue fraction remains constant) will in-
crease leaf area. This effect was observed in an early study that investigated responses of let-
tuce to green photons (Kim et al., 2004), but subsequent studies in horticultural species have
shown minimal responses to green photons (Hernández and Kubota, 2016; Kang et al., 2016;
Snowden et al., 2016; Son and Oh, 2015), and in some cases, plant diameter/leaf area actually
decrease (Meng et al., 2020; Snowden et al., 2016). Overall, increasing the fraction of green
photons has been observed to minimally affect leaf area and stem/petiole elongation in hor-
ticultural species.

Green photons have been observed to reverse blue photoneinduced anthocyanin accumula-
tion (Meng et al., 2019; Zhang and Folta, 2012), but this effect is not consistent (Meng et al., 2020).

17.4.5 Red (600e700 nm)

17.4.5.1 Photosynthesis

Red photons are efficiently absorbed by chlorophylls and are among the most efficient for
photosynthesis, especially under low to medium light intensities. Additionally, red LEDs
typically have higher photon efficacy (moles of photon output per joule of input energy,
see Chapter 7) compared to blue and green LEDs, which contributes to their prevalence in
plant factories. However, red photons become less efficient for leaf (and likely canopy) photo-
synthesis than green photons under high light intensities (Terashima et al., 2009; also see dis-
cussion in Section 17.4.4.1 on green photons). Unlike green photons, red photons are
primarily absorbed by the top layer of leaves in a canopy, thus exposing them to often exces-
sive light levels. Photosynthetic efficiency decreases with increasing PPFD as plants dissipate
an increasing fraction of the absorbed light as heatda photoprotective mechanism against
potential oxidative damages under high light (Ruban, 2015).

Furthermore, although including a high fraction of red photons in grow lights can result in
energy savings, the cost of red LEDs (i.e., initial capital investment) is relatively high. White
LEDs are fairly efficient and less expensive as they are widely used for human lighting.
Kusuma et al. (2020) suggested that a white LED enriched with red photons may be best
suited for plant factories considering the photon efficacy and luminaire cost. Broad spectrum
white light is gaining popularity over a combination of blue þ red light for horticulture light-
ing as it is easier to diagnose pests, diseases, nutritional disorders under white light; it also
creates a more pleasant light environment for workers. The green photons emitted by white
LEDs may also improve photosynthetic efficiency at canopy level.

17.4.5.2 Development

Red photons act on the photoreceptor phytochrome to modulate plant development. The
effect of red photons is often discussed in tandem with far-red, either through the R:FR ratio,

17.4 General effects of spectrum 319



or phytochrome photoequilibrium, which is an estimated ratio of active phytochrome (PFR) to
total phytochrome (PR þ PFR). Issues with these common metrics were recently reviewed in
Kusuma and Bugbee (2021).

Absorbance of red photons by PR (the inactive form of phytochrome) converts it into the
active PFR form. This active form then goes on to modulate plant development via regulation
of gene expression. PFR inhibits the expression of genes related to cell wall expansion and the
hormones auxin, gibberellin, and brassinosteroids (de Lucas and Prat, 2014). Therefore, red
photons tend to decrease cell expansion in leaves and stems.

It has been observed that photobleaching may occur under a high fraction of red photons
(Fig. 17.3). The exact cause of this phenomenon is unknown, as longer wavelength photons
do not typically induce photobleaching (Takahashi et al., 2010). Due to the widespread use
of 660 nm red LEDs in horticulture, research should focus on the mechanism causing this ef-
fect in order to identify potential remedies.

17.4.6 Far-red (700e800 nm)

17.4.6.1 Photosynthesis

The spectral response of photosynthesis is traditionally quantified under monochromatic
light. Far-red photons have long been considered inactive for photosynthesis due to their
low photosynthetic efficiency when applied alone (Emerson and Lewis, 1943; McCree,
1971). However, spectral responses determined under monochromatic lights do not account
for synergistic action among photons of different wavelengths. Synergism among wave-
lengths on photosynthesis was first discovered by Emerson et al. (1957), who found that
the photosynthetic rate under simultaneous illumination of photons above 680 nm and

FIGURE 17.3 Photobleaching of medical cannabis inflorescence under a high fraction of red photons (approxi-
mately 75% or greater). Photo courtesy of Mitchell Westmoreland.
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shorter wavelength light was greater than the sum of the rates from applying each light
separatelyda phenomenon now known as the Emerson Enhancement Effect. This finding
contributed to the identification of two photosystems in photosynthesis, both of which are
required to be stimulated in order for photosynthesis to operate (Duysens and Amesz,
1962; Hill and Bendall, 1960; Myers, 1971). In fact, to achieve optimal photosynthetic effi-
ciency, the two photosystems need to operate at matching rates. The significance of wave-
length synergy in photosynthetic efficiency has received little attention until recently with
the current definition of PAR (400e700 nm) excluding far-red photons.

Several recent studies using narrow spectra LEDs have shown that far-red photons added
to shorter wavelength photons (e.g., red and blue) synergistically increase leaf photochemical
efficiency (Zhen and van Iersel, 2017) and photosynthetic rate (Hogewoning et al., 2012;
Murakami et al., 2018). This is because shorter wavelength photons from 400 to 680 nm
tend to overexcite one of the photosystems (PSII), while longer wavelength far-red photons
preferentially excite the other photosystem (PSI) (Evans, 1987; Laisk et al., 2014; Zhen
et al., 2019). Combining far-red with shorter wavelength photons helps restore the balance
of excitation between the two photosystems, leading to synergistic enhancement of photosyn-
thetic efficiency (Zhen and van Iersel, 2017). Furthermore, both short- and long-term studies
of canopy photosynthesis indicated that far-red photons (700e750 nm) are equally efficient
for photosynthesis at canopy level when up to ~40% of those photons were applied with
400e700 nm photons (Zhen and Bugbee, 2020a, 2020c). These recent findings warrant
reconsideration of the photosynthetic value of far-red photons and argue for a new definition
of PAR that extends to 750 nm (Zhen et al., 2021).

Because far-red photons are of lower energy, they can achieve a high photon efficacy
(Kusuma et al., 2020, Capter 7). As far as photosynthetic efficiency is concerned, it is cost-
effective to include far-red photons in the grow light in plant factories.

17.4.6.2 Development

Plants are highly sensitive to far-red photons. As discussed in Section 17.4.5.2 on red pho-
tons, far-red interacts with plant development through the photoreceptor phytochrome.
While phytochrome activation (PR to PFR) is most sensitive to red photons, phytochrome inac-
tivation (PFR to PR) is most sensitive to far-red (Fig. 17.2C). When phytochrome is inactivated,
the inhibition of gene expression related to cell wall expansion and hormone synthesis is
lifted (de Lucas and Prat, 2014; Legris et al., 2019). This leads to more leaf expansion and/
or stem elongation depending on the species.

Supplementation with far-red in sole-source lighting has been shown to increase fresh
and dry mass of lettuce in tandem with an increase in leaf area (Lee et al., 2016; Meng and
Runkle, 2019), and these responses tend to be more pronounced at higher fractions of far-
red. However, due to the increase in photosynthesis from far-red, it is difficult to separate
the effect on leaf expansion (thus more photon capture) from that on photosynthesis.
Other studies that substitute far-red rather than supplement far-red still show an increase
in leaf expansion and dry mass (Fig. 17.4; Zhen and Bugbee, 2020a). In contrast, orna-
mental species geranium and snapdragon were shown to increase leaf area with far-red
substitution but without an increase in dry mass (Park and Runkle, 2017). Although let-
tuce has been shown to increase leaf area in response to far-red, a decrease in leaf area
is often reported in shade-avoiding species (Casal, 2012). In species that are adapted to
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high light like tomato and cucumber, far-red tends to increase stem and/or petiole elon-
gation (Kalaitzoglou et al., 2019; Meng et al., 2019; Park and Runkle, 2017). This may not
be desirable in plant factories.

Plant responses to far-red also interact with the background PPFD and temperature.
The reversion of active PFR back to inactive form of PR can occur independent of light
in a temperature-dependent manner, with faster reversion rate at higher temperature.
This is known as thermal reversion of phytochromes, and the effect is more pronounced
under lower PPFDs (Sellaro et al., 2019). This effect means that plant responses to far-red
(elongation) are expected to be more pronounced at both higher temperatures and lower
PPFD.

In addition to these effects on morphology, one recent study found that supplemental far-
red increased fruit yield of tomatoes, possibly through increased fruit sink strength and dry
mass partitioning to the fruits (Ji et al., 2020).

Far-red can be applied near the end-of-day to mimic the relative increase in far-red under
natural conditions (Kasperbauer, 1971). These end-of-day far-red treatments are still used to
this day as an energy-saving method to alter development in greenhouse and indoor crop
production, but it tends to be less effective than far-red applied over the entire photoperiod
(Kalaitzoglou et al., 2019; Morgan and Smith, 1978).

Far-red supplementation was reported to decrease anthocyanins and/or carotenoids (with
no effect on phenolics) in lettuce (Li and Kubota, 2009; Zou et al., 2019) and also caused carot-
enoid concentration to decrease in tomato (Kalaitzoglou et al., 2019). By contrast, Lee et al.
(2016) saw an increase in the concentration of phenolics with increasing far-red.

FIGURE 17.4 Lettuce ‘Waldmann’s Dark Green’ grown under blue þ red (top left) or cool white LEDs (bottom
left). When replacing 15% of the red/blue or white photons with far-red photons (total photon flux remained con-
stant), leaf expansion of lettuce significantly increased without any reductions in canopy photosynthetic efficiency.
The increased radiation capture with far-red led to higher yield. For more details see Zhen, S., Bugbee, B., 2020a.
Substituting far-red for traditionally defined photosynthetic photons results in equal canopy quantum yield for CO2 fixation and
increased photon capture during long-term studies: implications for re-defining PAR. Front. Plant Sci. 11, 1433.
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17.5 Concluding remarks

LED-based crop production enables precise control of the light environment (intensity,
spectrum, and photoperiod) to optimize growth, modulate plant morphology and beneficial
secondary metabolites synthesis. With an increasing number of high efficiency LEDs of
distinct spectral peaks becoming available, there is a need for more research-based informa-
tion on creating light ‘recipes’ for various crops that have different desirable traits and are
harvested for roots, leaves, flowers, fruits, and/or secondary metabolites. In terms of optimal
spectrum for photosynthesis, most of the data thus far are collected using monochromatic
lights on single leaves under low light. More recent studies show that the responses differ
at canopy level and under different light intensities and spectral combinations (synergistic re-
sponses). Importantly, photosynthetic responses also interact with morphological and phys-
iological changes mediated by an array of photoreceptors during long-term crop cultivation.
Spectral effects on plant development vary significantly among species, spectral peaks, inten-
sity, duration, and timing of application. Additionally, the spectral responses interact with
other environmental factors such as temperature, water, and nutrient availability. Lastly,
the photon efficacy of the LED luminaire should be considered as it plays a large role in deter-
mining the cost of lighting. Continued research efforts in both academia and private sectors
are necessary toward the development of optimal spectra for crop production in plant
factories.
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