Director
Adam Arkin is the Dean A. Richard Newton Memorial Professor in the Department of Bioengineering at the University of California, Berkeley and Senior Faculty Scientist at the Lawrence Berkeley National Laboratory. He and his laboratory develop experimental and computational technologies for discovery, prediction, control and design of microbial and viral functions and behaviors in environmental contexts.
He is the chief scientist of the Department of Energy Scientific Focus Area, ENIGMA(Ecosystems and Networks Integrated with Genes and Molecular Assemblies, http://enigma.lbl.gov), designed to understand, at a molecular level, the impact of microbial communities on their ecosystems with specific focus on terrestrial communities in contaminated watersheds. He also directs the Department of Energy Systems Biology Knowledgebase (KBase) program: (http://kbase.us) an open platform for comparative functional genomics, systems and synthetic biology for microbes, plants and their communities, and for sharing results and methods with other scientists. He is director of the newly announced Center for Utilization of Biological Engineering in Space which seeks microbial and plant-based biological solutions for in situ resource utilization that reduce the launch mass and improves reliability and quality of food, pharmaceuticals, fuels and materials for astronauts on a mission to Mars. Finally, he is the Co-Director of the Berkeley Synthetic Biology Institute, which brings together U.C. Berkeley and Lawrence Berkeley National Laboratory Scientists with Industry Partners to forward technology and applications for sustainable biomanufacturing.
Division Director

Craig Criddle is a Professor in the Department of Civil and Environmental Engineering at Stanford University, and a Senior Fellow at the Woods Institute for the Environment. He is the Institutional Co-I for CUBES at Stanford and the lead of the Biofuel and Biomaterials Manufacturing Division of CUBES.
Dr. Criddle is interested in the environmental engineering, science, and science literacy needed for clean water, clean energy, and healthy ecosystems. His research focus is environmental biotechnology. He is best known for large interdisciplinary field projects, studies of microbial
ecology in bioreactors, and work on microbial transformations of persistent contaminants. Some current projects include a field-scale evaluation of uranium remediation; DNA-monitoring of microbial community structure at full-scale biological wastewater treatment plants; development of membrane bioreactors for energy recovery and nutrient removal; and studies to elucidate the mechanisms and kinetics of microbial transformation of halogenated solvents. To promote science literacy, he worked with award-winning San Francisco cartoonist, Larry Gonick to write "The Cartoon Guide to Chemistry." "Cartoons can give us an intuitive feeling for the why, and deeper understanding can grow from that intuition."
Faculty

Nils was formerly a member of the academic research staff as part of the Criddle-lab at Stanford University. For CUBES he is developing microbial cell factories that convert C1-carbons into high-performance polymers that can serve as materials for consumables and durable goods. He is also an Analog Astronaut, demonstrating biomanufacturing capabilities in the field (at a Space Exploration Analog and Simulation Habitat), as a proving ground for Mars. Will join University of Florida as assistant professor.
Senior Scientist

Jake hails from the far-away lands of the Midwest. He received his Bachelor's degree in Genetics from the University of Wisconsin-Madison where he was introduced to the world of scientific research through the study of the evolution of gene expression regulation in the yeast Saccharomyces cerevisiae. Upon graduation, Jake began his graduate work in Marine Studies at the University of Delaware where he studied the regulation of energy metabolism in green sulfur bacteria (the Chlorobiaceae). Being a microbiologist that had always admired synthetic biology from a distance, and one that was enamored with space exploration, Jake joined the Arkin Lab at the University of California-Berkeley as a postdoc to pursue applications of microbial engineering to space exploration and colonization. Jake's research interests include environmental microbiology, microbial physiology/systems biology, genetics, synthetic biology, and space bioengineering.

kbsander [AT] berkeley [DOT] edu
Kyle Sander grew up in Portland, Oregon and attended Oregon State University earning a B.S. in Chemical Engineering. He interned at a Georgia-Pacific Containerboard Mill for a year as an Environmental/Process Engineer, and then went on to earn an M.S. degree in Biological and Ecological Engineering studying life cycle effects of algae production for fuels and co-products. He also investigated rapid sand filtration as an algal dewatering process step and enzymatic degradation of, and simultaneous saccharification and ethanol production from, of algal cell biomass.
Kyle earned his PhD from the University of Tennessee, Knoxville conducting his thesis research within the BioEnergy Science Center at Oak Ridge National Laboratory. Kyle focused on characterizing and engineering regulatory genes and related cellular redox in two candidate lignocellulolytic, ethanol-producing biocatalysts; Clostridium thermocellum and Caldicellulosiruptor bescii. Basic redox metabolism was characterized in C. thermocellum, yielding an expanded view of redox metabolism in this organism, as well as a set of promising redox-active metabolic loci which were targeted in subsequent engineering for ethanol yield improvement done by others. Single-gene deletion mutants of promising regulatory gene targets in C. bescii were generated and screened in bioprocessing-relevant conditions to assess the engineering potential of each gene target. Deletion of a global redox sensing transcription factor (Rex) enabled C. bescii to synthesize 75% more ethanol and allowed us to comprehensively describe the unique Rex regulon in this organism. A genotype-phenotype relationship was identified between the FapR local fatty acid biosynthesis repressor and this organism’s tolerance to elevated osmolarity conditions, a highly complex, bioprocess-limiting, and difficult-to-engineer trait.
Outside of the lab, Kyle enjoys running, reading, rock-climbing, spending time with family and friends, and becoming more familiar with his new Berkeley and California surroundings.
Technical Staff

Allie graduated from the University of Georgia with a BS in Microbiology and a BA in Music, where she studied protein-lipid droplet localization behaviors in yeast models in the Starai Lab. She has previously interned in the Foster Lab to examine the effects of simulated microgravity on animal-bacteria symbioses in order to understand how spaceflight alters host-microbe interactions. Currently, she is working in the Averesch Lab to research bioplastic production through microbial engineering. She hopes to pursue a PhD to explore solutions to existing challenges in space biology, biotechnology, and environmental sustainability. In her free time, she enjoys playing piano, learning traditional Chinese instruments, and crocheting.
Cassandra is a highly motivated and curious senior undergraduate in the Bioengineering department at UC Berkeley, with a specific focus on cell and tissue engineering. She has previously worked in immunology research, where she formulated antibody-conjugated lipid nanoparticles and assessed their transfection into antigen presenting cells for their possible use as mRNA therapeutic delivery vehicles. She has also worked in polymer research, where she contributed to the standardization of nanoindentation as a modality for retrieval analysis of the polymer component from total knee replacement. Through her coursework and research experiences, she has developed a strong interest in the field of synthetic biology which she hopes to utilize to solve problems caused by the climate crisis, with the increasingly necessary exploration of space being one of these issues. Currently, she is working with Gwyneth Hutchinson and NASA CUBES to engineer Spirulina for pharmaceutical and flavor production with applications for supporting human exploration of space. She hopes that through this work and further research done through a PhD program and beyond, she will be able to assist in finding solutions to climate-related issues. In her free time, you can catch her at the roller rink, or on a hike in the Berkeley hills. She also enjoys crocheting and reading novels.
Postdoctoral Scholar

Sulogna Chatterjee is a Postdoctoral Fellow in Criddle-group at Stanford University where she is working on Metabolic Engineering of autotrophic microorganism for better carbon efficiency and production of high-performance bioplastics.
Dr. Sulogna is a DST Inspire Fellow, holds a PhD degree in "Environmental Biotechnology & Microbiology" from "CSIR- Indian Institute of Chemical Technology", India. Her research interest is carbon conversion, waste valorization, bioprocess designing, bioreactor operations, fermentation technologies, bioenergy production and circular biorefinery systems.
During her PhD she has published several high impact research papers and has been awarded the “Research Excellence Award” by BRSI-India and "Best Research Fellow Award" by CSIR-India. She has also represented 'India' in C3E- Women in Clean Energy Education Empowerment Symposium organized by U.S Department of Energy, MIT Energy Initiative, Stanford Energy and Texas A&M University, 2019.

Dr. Gözde Gülseren is a postdoctoral associate in the Averesch Group at the University of Florida, where she is focused on advancing space-based myco-processing technologies. She earned her B.S. in Food Engineering from Istanbul Technical University (ITU) in Turkiye, and completed her M.S. in Food Engineering and Sustainability through a joint program between ITU, the University of Chemistry and Technology in Prague (Czechia), and Centrale Supélec (France). Dr. Gülseren’s professional experience spans food product development and fermentation, areas in which she has applied her extensive academic training. She received her Ph.D. in Food Science and Human Nutrition from the University of Florida, where her research centered on the functionality of edible mycelia. During her doctoral studies, she was awarded a prestigious INFOGEST Short Term Scientific Mission Grant, enabling her to conduct research at the National Research Institute for Agriculture, Food and Environment (INRAé) in France. Dr. Gülseren's academic and professional achievements have been recognized with numerous honors, including the Silver Celebration Award and a third-place finish in the Student Oral Competition by the Institute of Food Technologists (IFT).

Zohaib Siddiqi was born in Brooklyn, New York, but was raised in the Bay Area, California. He pursued his B.S. in chemistry at the University of Michigan Ann Arbor, where he conducted research on melt-cast energetic materials with Professor Adam Matzger and MOF supported homogeneous catalysts with Professor Melanie Sanford. He obtained his Ph.D. in 2023 under Professor David Sarlah at the University of Illinois Urbana–Champaign, where his work was focused on the dearomative oxidation of aromatic and heteroaromatic compounds, as well the dearomatization of commodity polymers. Afterwards, Zohaib joined the lab of Professor Brooks Abel at the University of California Berkeley, where his work will be focused on developing novel methods for controlled cationic ring opening polymerizations.
Graduate Student

Vrinda Sharma is a graduate student in the CEE department at Stanford. She is working in the Criddle group on engineering autotrophic microorganisms for P4HB polymer production. She received a B.A. in Biological Sciences from Cornell University in 2022 and worked on impact of biocides like Triclosan on soil microorganisms Stenotrophomonas maltophilia in Hay Lab. Post graduation, she worked as Research Associate I in the Microbial Engineering team in Pivot Bio where she got interested in synthetic biology for environmental applications
Wienke is a graduate student in the Bioscience Engineering program at Ghent University, specializing in biochemistry and biotechnology. Currently, she is a visiting student intern at the University of Florida, collaborating with Dr. Nils Averesh on microbial physiology and metabolic engineering, with a particular focus on carbon metabolism and biopolymer synthesis.
Her ongoing research, a collaboration with Lucerne University of Applied Sciences and Arts and the European Space Agency (ESA), investigates the effects of microgravity on gene expression patterns in intervertebral discs (IVD), offering insights into cellular adaptation in space environments.
Previously, Wienke worked on projects involving the engineering of advanced enzybiotics as next-generation antimicrobial agents, employing molecular biology techniques to develop effective treatments. She has also focused on enzyme immobilization, using concanavalin A to create carriers for β-galactosidase, and contributed to the development of designer cellulosomes for biofuel production by optimizing enzyme cascades for efficient biomass degradation.
Undergraduate Student

Hue is an undergraduate student studying Bioengineering and Electrical Engineering and Computer Science at UC Berkeley. She is interested in exploring the intersection between synthetic and computational biology with hopes of harnessing an application towards enhancing biomedicine and sustainability. She is working with Dr. Hilzinger in the FPSD division of CUBES to help develop innovative approaches toward improving the metabolic engineering of A. platensis for small molecule production. By enhancing the production of pharmaceuticals, nutrients, and flavors in Spirulina, the project aims to support human exploration of space. In her free time, Hue enjoys traveling, watching sunsets at the beach, swimming, and crocheting.

Snigdha is an undergraduate at UC Berkeley (Class 2025) studying Genetics and Plant Biology. She is working with Dr. Sander on the CUBES project investigating the growth coupling of polyhydroxyalkanoate production in species of Cupriavidus for applications in space exploration. She is interested in studying the genetic engineering of metabolic pathways in bacteria and algae, especially in the broader context of sustainability.
Katie is an undergraduate from New York City studying Bioengineering and Electrical Engineering and Computer Science at UC Berkeley. She is interested in exploring the interdisciplinary connections between computer science and synthetic biology for therapeutic applications. Her past research experience includes altering strain specificity of phage-like molecules and developing small molecule therapeutics for immunosuppression.
Through CUBES, she will be working under the FPSD division towards metabolically engineering A. platensis for small molecule production. Katie hopes to pursue a PhD in Bioengineering after graduation to strength her experimental planning and scientific analysis skills. In her free time, she enjoys trying new foods, traveling, hammocking, crafting, and spending time with friends and family.

Hanen is an undergraduate at UC Berkeley studying Bioengineering. He is interested in utilizing computational and synthetic biology to reduce plastic pollution, develop new drugs and diagnostics, and improve food production and the environment, especially in poorer regions of the world. At CUBE, he is focusing on engineering microbes to produce bioplastics useful for applications in space missions as well as on Earth.
After undergrad, Hanen plans to pursue a PhD in bioengineering or biotechnology to grow as a scientist. He aims to start a company one day focusing on using bioengineering to address environmental and food insecurity issues around the globe.
As a San Franciscan native, Hanen enjoys exploring the Bay Area, sports, and reading in his free time.

Justin Wahyudi is an undergraduate student at UC Berkeley studying Bioengineering and Electrical Engineering and Computer Science. Justin is interested in exploring synthetic biology and understanding the various applications that the field offers in healthcare and pharmaceutical settings. He is currently working under Dr. Jacob Hilzinger in the FPSD division of CUBES to help genetically engineer A. platensis for the purpose of pharmaceutical production and supporting advances made in space exploration.
Alumni

Anthony Abel is a Ph.D. student in Chemical Engineering in the Clark Laboratory at UC Berkeley. Previously, he earned his B.S. in Chemical Engineering and M.S. in Materials Science at Drexel University in Philadelphia, PA, where he developed solution deposition techniques for inexpensive semiconductor materials. He has previously worked for the National Renewable Energy Laboratory, where he designed reactors for the sustainable production of hydrogen via photoelectrochemical water splitting.
Anthony’s research interests lie at the intersection of chemical engineering, materials science, and microbial synthesis. Within CUBES, he will focus on the simulation and design of hybrid bioinorganic reactors and engineering microbes to function optimally within this artificial environment.
In his spare time, Anthony is a mentor for Bay Area Graduate Pathways to STEM, and enjoys reading science fiction and playing squash.

Jeremy Adams is a Ph.D. student in Chemical and Biomolecular Engineering at UC Berkeley, currently working in the Clark Lab. He received a BSE in Chemical Engineering from Arizona State University in 2017. Jeremy’s research interests lie in the intersection of synthetic biology and biochemical engineering, particularly towards the development of sustainable biomanufacturing processes. His work in CUBES involves engineering lithoautotrophic microbes to convert Mars-available resources into useful products, as well as engineering export pathways of those products to simplify downstream separation processes. In his free time, Jeremy enjoys traveling and scuba diving.

Artavazd Badalyan received a Diploma in chemistry from the Lomonosov Moscow State University in Russia and a Ph.D. in analytical biochemistry in the group of Prof. Ulla Wollenberger from the University of Potsdam in Germany where he focused on the bioelectrochemistry of molybdenum hydroxylases and on the development of electrochemical biosensors. He was a postdoctoral research associate with Prof. Shannon Stahl at the Department of Chemistry at the University of Wisconsin-Madison in the field of organic electrochemistry where he developed a novel bioinspired electrocatalyst system for the low-potential alcohol oxidation. Following a position at the Draegerwerk AG as a project leader in the field of electrochemical sensors, he joined the group of Prof. Lance Seefeldt at the Department of Chemistry and Biochemistry at the Utah State University and works on the (bio)electrocatalysis for nitrogen fixation.

Brooklyn Brace is a third year undergraduate student at UC Berkeley studying Molecular and Cell Biology. She has an interest in microbiology and genomics and how they apply to bioengineering. In the Arkin Lab, Brooklyn is currently working in the MMFD division investigating genes important for nitrogen fixation. Previously, Brooklyn worked in a synthetic biology lab at Columbia University working on the development of a multiplexed drug screening platform.

Daniel received his Ph.D. in Plant Biology with a designated emphasis in biotechnology from the University of California, Davis in 2017. Daniel’s research utilized a multidimensional approach to better understand the immune response initiated by XA21, a rice immune receptor that provides resistance to bacterial leaf blight (BLB) disease. As part of his Ph.D. studies, Daniel also performed research at the International Rice Research Institute in the Philippines, where he used marker-assisted selection to develop stacked resistance to BLB in the Swarna-Sub1 rice variety, which is tolerant to flooding and favored by millions of subsistence farmers in India. Daniel also interned with East-West Seed Group in Thailand, where he developed genetic markers to distinguish isolates of Colletotrichum spp. causing pepper anthracnose and Fusarium oxysporum f. sp. momordicae causing Fusarium wilt on bitter gourd.
Daniel is currently a post-doctoral scholar in Devin Coleman-Derr’s group at the University of California, Berkeley where he is exploring ways to minimize the challenges of extraterrestrial farming, including finite resources and limited growing space within controlled-environment agricultural systems. Focusing on rice, Daniel is using a microbiome-based approach to select plant growth promoting bacteria that enhance phosphorus and water-use efficiencies. Additionally, he is using CRISPR/Cas9 based-gene editing to generate rice plants with increased conversion efficiency of light into edible biomass.

Rong Cai is a postdoc in the Yang Group at the University of California, Berkeley. She received her Ph.D. degree in Chemistry Department from the University of Utah in 2019. Her research focuses on understanding the electron metabolism of microbes and designing inorganic material to deliver electron to bacteria efficiently.

Stefano Cestellos-Blanco is a Ph.D. student in Materials Science & Engineering in the Yang Group under the direction of Professor Peidong Yang at the University of California, Berkeley. He received his B.S. degree in Chemical Engineering from Stanford University in 2016. His research interests lie at the intersection of inorganic materials and molecular biology. He envisions a future in which nanoengineered materials work in cooperation with the natural world. Stefano is investigating biohybrid catalytic systems for the fixation and utilization of CO2 and N2 in the MMFD division of CUBES.
Wesley Chuang is a 1st year Ph.D. student in Chemistry at the University of California Berkeley in Professor Yang's Group. He received his B.S. degree in Chemical Engineering from National Taiwan University in 2017 and M.S. degree in Chemical and Biomolecular Engineering from University of California Berkeley in 2019. His research interest is focused on the CO2 fixation via bio-hybrid system in the MMFD division of CUBES.

Calvin (Tae Hyun) is pursuing his PhD in Civil and Environmental Engineering at the University of Alberta, Canada, under the supervision of Professor Bipro Dhar. His research scholarly pursuits center around advancing microbial electrochemical technologies, focusing on the development of bioelectrochemical sensors for the detection of naphthenic acids in oil sands process water, as well as exploring microbial electrolysis cell-assisted anaerobic digestions and microbial electrosynthesis systems for the conversion of carbon dioxide into biomethane and for biogas upgrading applications. Presently, he is a visiting scholar in Professor Craig Criddle's laboratory at Stanford University. As part of the CUBES project, Calvin works under the mentorship of Professor Craig Criddle and Dr. Nils Averesch, where he is involved in converting methane and methanol into para-hydroxybenzoic acid (pHBA) using methanotrophs through metabolic and genetic engineering. His academic excellence is also recognized through prestigious awards such as the Izaak Killam Memorial Graduate Scholarship and the Canada Graduate Scholarship from the Natural Sciences and Engineering Research Council of Canada.

Doug Clark is the Gilbert Newton Lewis Professor in the Department of Chemical and Biomolecular Engineering and the Dean of the College of Chemistry of the University of California Berkeley.
Dr. Clark’s research interests are in biochemical engineering and biocatalysts. His research is in the field of biochemical engineering, with particular emphasis on enzyme technology, biomaterials, and bioenergy. Current projects include the structural characterization and activation of enzymes in non-aqueous media, the development of metabolic biochips for high-throughput catalysis and bioactivity screening, protein design and assembly for the development of advanced biomaterials, and enhanced conversion of lignocellulosic feedstocks to biofuels.

Anna received her B.S in Biotechnology from National Technical University of Ukraine and M.S. in Microbiology from the University of Oklahoma, where she was a Fulbright Scholar. She got her Ph.D. in Biological Engineering from Utah State University. Her M.S. thesis research focused on characterization of ultra-small microorganisms from anoxic sulfur-rich pond using bioinformatics. For her Ph.D. research, Anna worked with local municipal and industrial wastewater treatment facilities to improve microbial transformation of organic waste compounds and algal biomass into valuable bioproducts, such as biogas and bioplastic. She also developed a computational model describing anaerobic microbial granulation in the upflow anaerobic sludge blanket reactors.
Anna is currently a postdoc in the group of Prof. Lance Seefeldt at Utah State University and is working on engineering nitrogen-fixing purple non-sulfur bacteria and bioprocess design.

Jithran Ekanayake grew up in Sri Lanka and moved to the United States in 2016 to study biology at Carleton College, MN on a Starr Foundation scholarship. He is now a graduate student in the Department of Agricultural and Biological Engineering at the University of Florida, where he works with Dr. Amor Menezes and the Systems Design and Integration Division of CUBES to develop experimentally-validated models of space biomanufacturing processes in low-shear modeled microgravity.
Outside of space synthetic biology, he is interested in pararescue, resilience education, and how space exploration could function as a propellant for the peaceful unification of people and nations across the globe.

Daphne is an undergraduate student at Purdue University studying Engineering Technology Education with minors in Computer Information Technology, Global Studies, Biological Sciences, Biotechnology, and Design & Innovation. She has previously been involved with the HHMI SEA-PHAGES project at Purdue University discovering and characterizing novel bacteriophages. Additionally, she has previously written and edited for a variety of science communication publications.
Within CUBES, she is working with Kyle Sanders on the Numerical Modeling team as a SULI intern, where she is using Julia to analyze relationships within a microbial ecosystem for implantation into the rhizosphere of O. sativa.

Skyler Friedline received his BS in Biochemistry and Molecular Biology from UC Santa Barbara in 2016. He is new to the fields of synthetic biology and microbial engineering but is motivated to learn quickly and make an impact. He began working as a research associate and lab manager in Adam Arkin's UC Berkeley Lab in 2019. He is interested in the development of microbes enabling closed loop living in space and on earth.

Wakuna is a PhD candidate in the environmental engineering program working with Prof. Craig Criddle. Her research focuses on the microbial degradation of methane in mixtures (biogas and natural gas) for the production of biodegradable polymers called polyhydroxyalkanoates (PHAs). Wakuna is interested in understanding the impact these methane mixtures have on microbial communities, the dynamics between the microbial interactions under certain complex conditions, while optimizing the polymer production process and bacterial growth rates. In addition to research, Wakuna is quite passionate about tutoring and mentoring.

Wenyu Gu is currently a postdoc at Stanford University.

Derek F. Harris is a Postdoctoral Fellow in the Seefeldt group at Utah State University. He received a B.S. in biology from Dixie State University and a Ph.D. in biochemistry from Utah State University.
Dr. Harris is interested in the mechanism and evolution of nitrogenase enzymes, as well as applications of nitrogenases unique catalytic properties.

Avery is a third year undergraduate student at UC Berkeley, currently working towards a double major in Economics and Molecular and Cell Biology with an emphasis in developmental genetics. She is interested in how the intersection of her two academic disciplines come together to further the research behind space exploration. In CUBES, Avery is working towards optimizing an elemental balance in a martian biomanufacturing system. Previously, Avery worked at the University of Michigan on research relating to metabolic control in the immune system and the development of new drugs for the treatment of autoimmunity and cancer.
In the future, Avery would like to pursue a career in the biotechnology industry.

Ji Min Kim is a 1st year Ph.D. student in Materials Science and Engineering at the University of California Berkeley in the Yang Group. She received her B.S. degree in Materials Science and Engineering from Hanyang University in 2016 and M.S. degree in Materials Science and Engineering from Seoul National University in 2018. Her research interest is focused on the CO2 fixation via a semiconductor nanowire-bacteria hybrid system in the MMFD division of CUBES. The system utilizing light capturing high surface area nanowire array and acetogenic anaerobes enables the photoelectrochemical acetic acid production with long-term stability.

Rhesa discovered her scientific interest many years ago in a high school chemistry class. Her inspirational teacher, Mr. Best—the stereotypical science geek with large bug-eye glasses—taught Rhesa many scientific lessons, but perhaps the greatest was that science is not just for nerdy boys (as her flawed logic thought), it is for anyone.
Currently, a Ph.D. student in the Department of Chemistry and Biochemistry at Utah State University, Rhesa can be found at the laboratory bench doing research focused on understanding and harnessing the amazing abilities of microorganisms. Specifically, she studies the microbial transformation of nitrogen (N2) to ammonia (NH3). This process is a critical part of nature as the majority organisms cannot utilize N2 directly, but need it in a form like NH3 for growth and reproduction. The few microbes that facilitate this conversion provide valuable insight into one of the most biologically challenging reactions and may serve as a catalyst for developing systems for sustainable ammonia production on Mars.
In additional to research, Rhesa also serves as a science reporter for Utah Public Radio and plans to pursue a career in science education and/or communication. Her excitement for not only doing science, but communicating it just might stem from growing up doing musical theater, which she loves. She also enjoys experiencing other cultures, and hot-potting is always on her list of things to do (and yes, it’s partly to see the beautiful microbial mats)!
Anderson Lee is a third-year undergraduate student at UC Berkeley studying Bioengineering with a focus on Synthetic and Computational Biology. He is currently optimizing the production of biopharmaceuticals to be utilized during space travel. In previous companies, he has developed an ELISA procedure to determine the concentration of a tumor-detecting drug in biological samples and enhanced a mobile, quick diagnostic machine that scans for viruses. Previous to the Arkin Lab, he worked in Mohammed Mofrad's Cell and Biomechanics Laboratory at UC Berkeley where he used neural networks with backpropagation to predict a virus' host based on the genome of the virus.
In the future, he sees himself using synthetic biology to conquer problems inherent to the nature of space travel. He believes that technology already present in nature and perfected with evolution can be the key to send humans to other planets.

Elizabeth (Libby) Lineberry is a Chemistry Ph.D. student in the Yang Lab at the University of California, Berkeley, where she works on photosynthetic biohybrids. She received her B.S. in chemistry from Bethany College in 2021. Libby’s research interests include photoelectrochemistry, microbiology, and the combination of these fields to lead to a highly selective artificial photosynthesis system.
Kim is a second-year undergraduate student studying Bioengineering. She is interested in the applications of engineering and science in space exploration. In CUBES, she will be working on exploring species of cyanobacteria and developing a pan-genome.

Tiago is a visiting doctoral student from the Humans on Mars project of the University of Bremen, Germany. As a part of his doctorate project, he is looking to convert cyanobacterial biomass produced on Mars from in-situ resources into a plant fertilizer and other products of interest. To carry out this conversion both anaerobic digestion and bioelectrochemical systems are employed and explored within a wet lab and modelling context. The overarching goal is to explore Mars sustainably by harnessing local resources and reducing shipped payload mass. During his research stay, he will be working on the bioplastic production by C. necator and the modelling of the cyanobacterial biomass processing.

Lance C. Seefeldt is Professor of Chemistry and Biochemistry at Utah State University. He received his PhD in Biochemistry from the University of California at Riverside and was a Postdoctoral Fellow in the Center for Metalloenzyme Studies at the University of Georgia. He joined the faculty at Utah State University in 1993. He is the recipient of the D. Wynne Thorne Research Award and is a Fellow of the American Association for the Advancement of Science. He is the Utah State University Institutional PI and lead of the Microbial Media and Feedstock Division of CUBES.
Dr. Seefeldt’s research focus is on biological nitrogen fixation. He has been investigating the mechanism of activation of N2 by the bacterial enzyme nitrogenase. This work has recently lead to the insight that metal-hydrides are central to the reduction of N2 to NH3. He is also investigating how to grow nitrogen fixing bacteria with electrodes as a way to accomplish light-driven reduction of N2 and CO2 as a way to capture and make available these resources from the Martian atmosphere.

Yuexiao Shen joined Prof. Peidong Yang’s group at UC Berkeley as a postdoc in October, 2017. He finished his Ph.D. from the department of Chemical Engineering at Penn State in 2016. During his Ph.D., he worked on several projects in the interdisciplinary areas of chemical engineering, biology, chemistry and material science. He was focused on developing bioinspired membranes using membrane proteins that mimic the rapid and selective transport as seen in biological membranes. He extended to explore the potential of mimicking biological channels and lipids using supramolecular chemistry and investigating them using biophysical techniques. Yuexiao finished his bachelor and master degrees at Tsinghua University, where he studied environmental engineering. His academic accomplishments include several high-quality publications in journals such as PNAS, JACS and Journal of Membrane Science (JMS), and have been recognized by nationwide academic organizations with a number of very competitive awards. Yuexiao has already been offered an assistant professor position at Department of Civil, Environmental, and Construction Engineering at Texas Tech.
Divya is a third year undergraduate student at UC Berkeley majoring in Bioengineering. She screens Spirulina mutants as they are generated and help in the development of better transformation methods for this organism in FPSD.

Jeffrey Skerker's research focuses on engineering complex traits in microbes using a systems metabolic engineering approach. He has worked on a variety of non-model bacteria and fungi and is particularly interested in developing methods for high-throughput genetics and genome engineering. In the CUBES program, he will help develop Arthrospira platensis (commonly known as Spirulina) as a source of nutrition and medicine. In the initial phase of this project, a basic genetic toolbox will be developed for this organism and then as proof of concept, a two-gene pathway for the production of acetaminophen (i.e. Tylenol) will be integrated into the genome. Although Spirulina is widely grown at the industrial scale as a nutritional supplement, very little strain genetic engineering has been reported in the scientific literature.

Spencer is originally from Colorado Springs. He received a B.S. in biochemistry from Brigham Young University - Idaho. Currently, he is pursuing a Ph. D in Biochemistry at Utah State University.
Alex Starr is a second year undergraduate at University of California Berkeley with interests in synthetic and molecular biology, applied math, artificial intelligence, and the utilization of biology in space exploration. As part of CUBES, he is working to develop a system for the detoxification and enrichment of Martian regolith using the perchlorate reducing bacterium Azospira suillum PS. Prior to joining CUBES, Alex studied expression of genes related to root growth in sunflowers and worked on understanding the genetic basis of drought-tolerant root phenotypes in maize.

Alex graduated from Georgetown University in 2014 with a B.S. in Environmental Biology with a focus in community ecology. Following graduation, he moved to the University of Kentucky to study how bacterial symbionts mediate insect ecology in agricultural systems.
Now, pursuing a PhD in Plant Biology at UC Berkeley, Alex studies plant-associated microbial communities from shoots to roots. In cassava, a tropical root crop, Alex investigates the phyllosphere ecology and carryover of the microbiome between planting seasons. For CUBES, he aims to construct synthetic bacterial communities via host-mediated selection to better grow rice in space. As both a Trekkie and wannabe farmer, Alex is very excited to be a member of FPSD.

Currently Su is a postdoctoral researcher working with Professor Peidong Yang at University of California, Berkeley. His current research focuses on the bioelectrochemical CO2 fixation and N2 reduction. He received his Ph.D. degree in Chemistry on September 2017, with Professor Peidong Yang at University of California, Berkeley. During the Ph.D., he was awarded the MRS Graduate Student Award and the Chinese Government Award for Outstanding Self-financed Student Abroad. Su obtained his B.S. degree in Chemistry from University of Science and Technology of China on 2012, before joining the Peidong Yang Group as a graduate student.
Tom is a Visiting Scholar from the Netherlands completing the research for his master thesis in the Peidong Yang Group. His work is focused on the microbial synthesis of ammonia from dinitrogen gas. Ammonia is essential for a successful manned mission to Mars. However, it is not feasible to achieve the current production method, the Haber-Bosch process, on Mars due to limited resources. Therefore, the search for an alternative way to produce ammonia is paramount to the success of this mission. The reduction of dinitrogen gas with a solar-driven potential and bacteria as catalysts is a very promising way of achieving this.

Kyle Valgardson bachelors of science Biochemistry from Utah Valley University and is currently pursuing a doctorate degree in biochemistry at Utah State University.

Anya is a graduate student at the University of Florida getting her Ph.D. in Biomedical Engineering with Professor Menezes. Her interests include the application of synthetic biology for medical use in space to better support human space exploration.
Prior to the University of Florida, she received her B.S. in Biomedical Engineering at Columbia University in New York City, where she also competed as the Payload Lead on the university’s rockets team. There, Anya also worked on developing microfluidic devices for cancer diagnostics.
She is originally from Fort Lauderdale, Florida and in her spare time enjoys painting and arts and crafts!

Nicholas Watanabe is a Ph. D. student in chemistry at the University of California, Berkeley, where he joined the Yang lab in 2021. He received his B.S. in chemistry from Lehigh University in 2018. Nicholas’ research interests lie in using light to power reactions and processes, such as photo(electro)chemical fixation of carbon dioxide by acetogens. To this day, he still finds microbes and all that they can do fascinating, whether it is saving the world one CO2 molecule at a time or placing the finishing touches on tea, coffee, or dry-aged meats.

Kelly Wetmore is a graduate student in Adam Arkin’s lab at UC Berkeley with over 15 years of experience in microbial physiology and genetics before and during graduate school. She has been instrumental in developing a number of next-generation tools and protocols for microbial functional genomics. Kelly is supporting the CUBES team in applying these tools to optimize the core biomanufacturing microbes in physiologically more-or-less relevant conditions. She is also part of a large DOE environmental systems biology project in which she is developing a new technology to query high-throughput genetic interactions.
Shunsuke Yamazaki graduated Tokyo University, Japan, where he investigated the mechanism of bacterial lipoprotein transport in the laboratory of Hajime Tokuda. He is then hired Ajinomoto Co., Inc. and joined Research Institute for Bioscience Products and Fine Chemicals, Kawasaki, Japan, where he worked on breeding strains and developing several processes for production of amino-acids and pharmaceuticals. He was currently in charge of investigation of pharmaceutical production using enzymatic conversion process. He became a visiting scholar researcher of Adam Arkin lab at UC Berkeley, CA, USA.

Spencer is a senior at UC Berkeley studying MCB and astrophysics. He joined CUBES in October 2021 and is currently working with Aaron Berliner on an examination of habitability in black hole accretion disks. Outside of astrobiology, Spencer is interested in music and education, and helps direct an organization providing free college admissions prep to communities in the Bay Area. In his spare time, Spencer likes to read, play piano, and game.

Liangzi is a graduate student in Criddle-group at Stanford University. She is working on improving the metabolic function in autotrophic microorganisms to enhance carbon efficiency and produce high-performance bioplastics as part of CUBES.
She is interested in sustainable biomanufacturing, bioremediation, as well as carbon capture and utilization.