Reset

Undergraduate Student

Brooklyn Brace is a third year undergraduate student at UC Berkeley studying Molecular and Cell Biology. She has an interest in microbiology and genomics and how they apply to bioengineering. In the Arkin Lab, Brooklyn is currently working in the MMFD division investigating genes important for nitrogen fixation. Previously, Brooklyn worked in a synthetic biology lab at Columbia University working on the development of a multiplexed drug screening platform.

Jesse Michael Delzio
Jesse Michael Delzio
Areas of Interest:

Jesse Delzio is a third year biochemical engineering undergraduate at the University of California, Davis. He began research with Dr. Somen Nandi and Dr. Karen McDonald in July 2017 and is currently researching drug purification through the functionalization of viral coat proteins to be used for simpler isolation in low resource environments such as Mars. He is currently working under the mentorship of Matthew McNulty. His interests include chemical engineering, biotechnology, and plant engineering. Jesse has investigated the expression and capture of recombinant parathyroid hormone from different lettuce varieties. He has also provided calculations of land area and expression levels required to sustain a team of astronauts on Mars. 

Prior to his research in the McDonald-Nandi lab, Jesse worked as a lab intern for a chemical company in San Diego called Designer Molecules Inc. His main interests were chemistry and physics. He applied to the University of California, Davis and studied chemical engineering for his first two years. After discovering a project involving biomanufacturing for deep space exploration led by Dr. McDonald, Jesse's interest in biotechnology and biology grew, urging him to switch majors to biochemical engineering. He has been researching for the Center for the Utilization of Biological Engineering in Space on their Mars exploration project ever since.
 

drecksler-headshot
Saige Drecksler
Areas of Interest:

Saige is a fourth year at the University of Florida studying Aerospace Engineering. She is working with Dr. Amor Menezes under the Systems Design and Integration division. She is interested in the effects of space travel on biological systems and using alternative solutions to mitigate problems cause by long term missions.

Anderson Lee is a third-year undergraduate student at UC Berkeley studying Bioengineering with a focus on Synthetic and Computational Biology. He is currently optimizing the production of biopharmaceuticals to be utilized during space travel. In previous companies, he has developed an ELISA procedure to determine the concentration of a tumor-detecting drug in biological samples and enhanced a mobile, quick diagnostic machine that scans for viruses. Previous to the Arkin Lab, he worked in Mohammed Mofrad's Cell and Biomechanics Laboratory at UC Berkeley where he used neural networks with backpropagation to predict a virus' host based on the genome of the virus.

In the future, he sees himself using synthetic biology to conquer problems inherent to the nature of space travel. He believes that technology already present in nature and perfected with evolution can be the key to send humans to other planets.

Max Perko is a third year chemistry undergraduate at Stanford, studying biosynthetic polyester vitrimers for additive manufacturing in the Waymouth lab. His research is being performed in conjunction with that of Vince Pane (of the Waymouth lab) and the Criddle lab (Stanford Biology), for the Center for the Utilization of Biological Engineering in Space (CUBES) on their Mars exploration project.

Will is an undergrad at UC Berkeley studying molecular biology and math. He is captivated by the potential of synthetic biology and the application of modern methods of engineering to biology whether in microbes, mammalian cells, or multi-organism communities. In CUBES, Will models and designs microbial communities for agricultural enhancement. Previously, he has worked on metabolic engineering for the production of biofuels and commodity chemicals, directed evolution for the bioremediative degradation of plastic, and microRNA circuits and protein engineering for immunotherapy.