Postdoctoral Scholar

Dr. Nils Averesch is a Postdoc in the Criddle group at Stanford University, California, USA. Before joining CUBES, Nils was the Synthetic Biology Task Lead with Universities Space Research Association as an Associate Scientist at NASA Ames Research Center in Mountain View, California, USA. He received his PhD in 2016 from the University of Queensland in Brisbane, Australia, where he focused on Metabolic Engineering at the Centre for Microbial Electrochemical Systems. He holds an engineer’s degree (Dipl. Ing.) in Biochemical Engineering, from the Technical University of Dortmund in Dortmund, Germany, having graduated in 2011.

Daniel received his Ph.D. in Plant Biology with a designated emphasis in biotechnology from the University of California, Davis in 2017. Daniel’s research utilized a multidimensional approach to better understand the immune response initiated by XA21, a rice immune receptor that provides resistance to bacterial leaf blight (BLB) disease. As part of his Ph.D. studies, Daniel also performed research at the International Rice Research Institute in the Philippines, where he used marker-assisted selection to develop stacked resistance to BLB in the Swarna-Sub1 rice variety, which is tolerant to flooding and favored by millions of subsistence farmers in India. Daniel also interned with East-West Seed Group in Thailand, where he developed genetic markers to distinguish isolates of Colletotrichum spp. causing pepper anthracnose and Fusarium oxysporum f. sp. momordicae causing Fusarium wilt on bitter gourd. 

Daniel is currently a post-doctoral scholar in Devin Coleman-Derr’s group at the University of California, Berkeley where he is exploring ways to minimize the challenges of extraterrestrial farming, including finite resources and limited growing space within controlled-environment agricultural systems. Focusing on rice, Daniel is using a microbiome-based approach to select plant growth promoting bacteria that enhance phosphorus and water-use efficiencies. Additionally, he is using CRISPR/Cas9 based-gene editing to generate rice plants with increased conversion efficiency of light into edible biomass.

Wenyu Gu is currently a postdoc at Stanford University. 

Soumyajit Sen Gupta has been a member of the SDID division of the CUBES since March 2018. Prior to joining the CUBES as a post doctoral research associate with Dr. Amor Menezes, he was a doctoral research scholar at Indian Institute of Technology, Bombay since 2012. His doctoral thesis was on integrated plant-wide optimization of microalgae biorefinery, co-producing fuel, food and chemicals. He is a Bachelors' (2010 batch) from Jadavpur University and Masters' (2012 batch) from Indian Institute of Technology, Kharagpur; both these degrees have been in the discipline of Chemical Engineering. His research interests are in the area of systems design, modeling and optimization, renewable energy and process systems engineering.

Derek F. Harris is a Postdoctoral Fellow in the Seefeldt group at Utah State University. He received a B.S. in biology from Dixie State University and a Ph.D. in biochemistry from Utah State University.

Dr. Harris is interested in the mechanism and evolution of nitrogenase enzymes, as well as applications of nitrogenases unique catalytic properties.

Jake hails from the far-away lands of the Midwest. He received his Bachelor's degree in Genetics from the University of Wisconsin-Madison where he was introduced to the world of scientific research through the study of the evolution of gene expression regulation in the yeast Saccharomyces cerevisiae. Upon graduation, Jake began his graduate work in Marine Studies at the University of Delaware where he studied the regulation of energy metabolism in green sulfur bacteria (the Chlorobiaceae). Being a microbiologist that had always admired synthetic biology from a distance, and one that was enamored with space exploration, Jake joined the Arkin Lab at the University of California-Berkeley as a postdoc to pursue applications of microbial engineering to space exploration and colonization. Jake's research interests include environmental microbiology, microbial physiology/systems biology, genetics, synthetic biology, and space bioengineering. 

kbsander [AT] berkeley [DOT] edu

Kyle Sander grew up in Portland, Oregon and attended Oregon State University earning a B.S. in Chemical Engineering.  He interned at a Georgia-Pacific Containerboard Mill for a year as an Environmental/Process Engineer, and then went on to earn an M.S. degree in Biological and Ecological Engineering studying life cycle effects of algae production for fuels and co-products. He also investigated rapid sand filtration as an algal dewatering process step and enzymatic degradation of, and simultaneous saccharification and ethanol production from, of algal cell biomass.

Kyle earned his PhD from the University of Tennessee, Knoxville conducting his thesis research within the BioEnergy Science Center at Oak Ridge National Laboratory.  Kyle focused on characterizing and engineering regulatory genes and related cellular redox in two candidate lignocellulolytic, ethanol-producing biocatalysts; Clostridium thermocellum and Caldicellulosiruptor bescii.  Basic redox metabolism was characterized in C. thermocellum, yielding an expanded view of redox metabolism in this organism, as well as a set of promising redox-active metabolic loci which were targeted in subsequent engineering for ethanol yield improvement done by others.  Single-gene deletion mutants of promising regulatory gene targets in C. bescii were generated and screened in bioprocessing-relevant conditions to assess the engineering potential of each gene target.  Deletion of a global redox sensing transcription factor (Rex) enabled C. bescii to synthesize 75% more ethanol and allowed us to comprehensively describe the unique Rex regulon in this organism.  A genotype-phenotype relationship was identified between the FapR local fatty acid biosynthesis repressor and this organism’s tolerance to elevated osmolarity conditions, a highly complex, bioprocess-limiting, and difficult-to-engineer trait.

Outside of the lab, Kyle enjoys running, reading, rock-climbing, spending time with family and friends, and becoming more familiar with his new Berkeley and California surroundings.

Sunggeun Woo earned his B.S. and M.S. from Yonsei University in South Korea. During his B.S. and M.S. programs, he studied in the civil and environmental engineering department and he narrowed down his research focus to environmental biotechnology in his M.S. program, where he wrote fifteen papers for about two and a half years including five of them as the lead-author. At that time, the research topics were various in the field of environmental biotechnology including wastewater treatment systems, isolation and cultivation of microorganisms and harnessing renewable bio-diesel from microalgae. Based on the wide range of understandings, Sunggeun Woo joined the Criddle group for his Ph.D. program in September, 2012 focusing on the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) project. Sunggeun Woo participated in developing the CANDO process which produces a renewable energy, nitrous oxide (N2O), from nitrogen pollutants through microorganisms. During his Ph.D. program, Sunggeun Woo's main focus was to elucidate the microbial members that produce N2O and the metabolic pathways in them related to N2O and polyhydroxybutyrate (PHB) production. He graduated from Ph.D. program in January, 2018 and he is now continuing his research as a post-doctoral scholar in the Criddle group. His research is currently focusing on the recovery of renewable energy and materials from waste or wastewater using microorganisms.