Reset

Alumni

Dexter is a first year Ph.D. student in Chemical Engineering at UC Davis in the McDonald-Nandi Lab. He received his B.S. in Chemical Engineering from Columbia University, New York and his B.A. in Chemistry from University of Puget Sound, Washington through a Dual Degree Program. He is currently developing stable lines of transgenic lettuce, which express a parathyroid hormone fusion protein.

Artavazd Badalyan received a Diploma in chemistry from the Lomonosov Moscow State University in Russia and a Ph.D. in analytical biochemistry in the group of Prof. Ulla Wollenberger from the University of Potsdam in Germany where he focused on the bioelectrochemistry of molybdenum hydroxylases and on the development of electrochemical biosensors. He was a postdoctoral research associate with Prof. Shannon Stahl at the Department of Chemistry at the University of Wisconsin-Madison in the field of organic electrochemistry where he developed a novel bioinspired electrocatalyst system for the low-potential alcohol oxidation. Following a position at the Draegerwerk AG as a project leader in the field of electrochemical sensors, he joined the group of Prof. Lance Seefeldt at the Department of Chemistry and Biochemistry at the Utah State University and works on the (bio)electrocatalysis for nitrogen fixation.

Jesse Michael Delzio
Jesse Michael Delzio
Areas of Interest:

Jesse Delzio is a third year biochemical engineering undergraduate at the University of California, Davis. He began research with Dr. Somen Nandi and Dr. Karen McDonald in July 2017 and is currently researching drug purification through the functionalization of viral coat proteins to be used for simpler isolation in low resource environments such as Mars. He is currently working under the mentorship of Matthew McNulty. His interests include chemical engineering, biotechnology, and plant engineering. Jesse has investigated the expression and capture of recombinant parathyroid hormone from different lettuce varieties. He has also provided calculations of land area and expression levels required to sustain a team of astronauts on Mars. 

Prior to his research in the McDonald-Nandi lab, Jesse worked as a lab intern for a chemical company in San Diego called Designer Molecules Inc. His main interests were chemistry and physics. He applied to the University of California, Davis and studied chemical engineering for his first two years. After discovering a project involving biomanufacturing for deep space exploration led by Dr. McDonald, Jesse's interest in biotechnology and biology grew, urging him to switch majors to biochemical engineering. He has been researching for the Center for the Utilization of Biological Engineering in Space on their Mars exploration project ever since.
 

drecksler-headshot
Saige Drecksler
Areas of Interest:

Saige is a fourth year at the University of Florida studying Aerospace Engineering. She is working with Dr. Amor Menezes under the Systems Design and Integration division. She is interested in the effects of space travel on biological systems and using alternative solutions to mitigate problems cause by long term missions.

Kristian is an NSERC post-doctoral fellow in Environmental Engineering and Science at Stanford University. His current research focuses on: Hard-wiring bacteria in a microbial battery, salinity gradient energy production from a mixing entropy battery, and PHB bioplastic production from C. Necator. His PhD was in Chemical and Biological Engineering from the University of British Columbia in Vancouver.
 

Pauline received a bachelor's degree and a master's degree in pharmaceutical sciences from the University of Lyon, France. She is currently a visiting scholar in the Department of Chemical Engineering in the McDonald Laboratory at UC Davis.

Wakuna is a PhD candidate in the environmental engineering program working with Prof. Craig Criddle. Her research focuses on the microbial degradation of methane in mixtures (biogas and natural gas) for the production of biodegradable polymers called polyhydroxyalkanoates (PHAs). Wakuna is interested in understanding the impact these methane mixtures have on microbial communities, the dynamics between the microbial interactions under certain complex conditions, while optimizing the polymer production process and bacterial growth rates. In addition to research, Wakuna is quite passionate about tutoring and mentoring.

Brendan, originally from Austin, TX, is a second-year chemical engineering major with a concentration in biotechnology. His research interest lies in the intersection of chemical engineering and synthetic biology. As a part of CUBES, Brendan is currently working with postdoctoral scholar Jacob Hilzinger to genetically engineer cyanobacteria to produce useful biomass in both Earth-based and Mars-based economies.

Kalimuthu Karuppanan is a Postdoctoral scholar in the Department of Chemical Engineering, at the University of California, Davis. He received his Ph.D. in Biotechnology and M.S. degree in Plant Science from Madurai Kamaraj University, India. Since he has been at UC Davis Dr. Karuppanan has contributed to a number of research projects funded by DARPA, DTRA, and NSF and he has mentored many Ph.D. students and undergraduate researchers. He was the instructor for ECH161L, Bioprocess Engineering Laboratory course, in 2014 at UC Davis. He received the campus-wide Award for Excellence in Postdoctoral Research in 2016 and Phil Thai Memorial Award in Medicine for Lung Research in 2015 for his outstanding research performance. He is a co-inventor in a recently filed patent on Novel Fusion Proteins for Treating Inflammatory Diseases.  Dr. Karuppanan is a CUBES Co-PI and member of the Food and Pharmaceutical Synthesis Division.

His research is in protein biotherapeutics for treating infectious and non-infectious diseases. He has extensive experience in recombinant protein bioprocessing in planta. His work includes gene design, designing vector systems for agrobacterial-mediated gene transfer in plants, protein expression using plants and plant cell suspension cultures, protein purification using affinity and traditional chromatography systems, biophysical and functional characterization of recombinant proteins, and drug efficacy improvement by enzymatic glycan modification. 

Rhesa discovered her scientific interest many years ago in a high school chemistry class. Her inspirational teacher, Mr. Best—the stereotypical science geek with large bug-eye glasses—taught Rhesa many scientific lessons, but perhaps the greatest was that science is not just for nerdy boys (as her flawed logic thought), it is for anyone.

Currently, a Ph.D. student in the Department of Chemistry and Biochemistry at Utah State University, Rhesa can be found at the laboratory bench doing research focused on understanding and harnessing the amazing abilities of microorganisms. Specifically, she studies the microbial transformation of nitrogen (N2) to ammonia (NH3). This process is a critical part of nature as the majority organisms cannot utilize N2 directly, but need it in a form like NH3 for growth and reproduction. The few microbes that facilitate this conversion provide valuable insight into one of the most biologically challenging reactions and may serve as a catalyst for developing systems for sustainable ammonia production on Mars. 

In additional to research, Rhesa also serves as a science reporter for Utah Public Radio and plans to pursue a career in science education and/or communication. Her excitement for not only doing science, but communicating it just might stem from growing up doing musical theater, which she loves. She also enjoys experiencing other cultures, and hot-potting is always on her list of things to do (and yes, it’s partly to see the beautiful microbial mats)!

Mia Mirkovic is a second-year undergraduate student in the Electrical Engineering and Computer Sciences department at the University of California, Berkeley pursuing mixed-signal processing and circuit design. Her interests include systems modeling and control, imaging, representation theory, modern music technology and history, and radio.

She works with Aaron Berliner on the development of Crucible, an open-source, 3D-printable chamber for space synthetic biology experiments, and mathematical models for Martian in-situ resource utilization for life support, power, and an integrated, multi-function, multi-organism bio-manufacturing system to produce fuel, food, and materials. These models will likely underlie a software package for accelerating mission design and simulation. 
 

Dr. Takashi Nakamura received his Ph.D. in Aeronautics and Astronautics from MIT and his B.S. in Aeronautical Engineering from the University of Tokyo. Currently, he is the manager of Space Exploration Technologies at Physical Sciences Inc. (PSI), and has been involved in numerous R&D programs sponsored by NSF, NASA, DoE and DoD. 

Dr. Nakamura has been developing, with funding from the Air Force and NASA, a unique space solar power system for power generation, propulsion, materials processing, and plant lighting in space. This concept is based on the use of optical fibers for transmission of solar radiation, the concept Dr. Nakamura pioneered in 1976 while he was at Japan's Electrotechnical Laboratory. Dr. Nakamura is an Associate Fellow of AIAA, a member of AAS and Sigma Xi.

Yuexiao Shen joined Prof. Peidong Yang’s group at UC Berkeley as a postdoc in October, 2017. He finished his Ph.D. from the department of Chemical Engineering at Penn State in 2016. During his Ph.D., he worked on several projects in the interdisciplinary areas of chemical engineering, biology, chemistry and material science. He was focused on developing bioinspired membranes using membrane proteins that mimic the rapid and selective transport as seen in biological membranes. He extended to explore the potential of mimicking biological channels and lipids using supramolecular chemistry and investigating them using biophysical techniques. Yuexiao finished his bachelor and master degrees at Tsinghua University, where he studied environmental engineering. His academic accomplishments include several high-quality publications in journals such as PNAS, JACS and Journal of Membrane Science (JMS), and have been recognized by nationwide academic organizations with a number of very competitive awards. Yuexiao has already been offered an assistant professor position at Department of Civil, Environmental, and Construction Engineering at Texas Tech.
 

Soundararajan headshot
Mathangi Soundararajan
Areas of Interest:

Mathangi Soundararajan is a PhD candidate from India currently at Utah State University advised by Lance Seefeldt. She has also been awarded the Presidential Doctoral Research Fellow by Utah State University. She majored in biotechnology in her high school, and went on to get her Bachelors in Biomedical Sciences from Sri Ramachandra University. In her junior year, she was awarded the Undergraduate Summer Research Fellowship by Sri Ramachandra University to study the effects of dairy intake on inflammatory biomarkers in people with Type 2 Diabetes. She also worked as a Research Assistant at the Institute of Mathematical Sciences during her final year, where she studied the genetic susceptibility of Type 2 Diabetes patients to colorectal cancer using bioinformatics methods. Graduating at the top of her batch, she was awarded the 'Best Outgoing Student' medal as well. Her current research interest includes understanding and applying biological nitrogen fixation in bioelectrochemical systems. Her undergraduate research experience has also contributed to her interest in understanding metabolism and the effects of derangements in metabolism. When she is not losing track of time in the research lab, you can find her catching up on TV series and Netflixing. 
 

Alex Starr is a second year undergraduate at University of California Berkeley with interests in synthetic and molecular biology, applied math, artificial intelligence, and the utilization of biology in space exploration.  As part of CUBES, he is working to develop a system for the detoxification and enrichment of Martian regolith using the perchlorate reducing bacterium Azospira suillum PS.  Prior to joining CUBES, Alex studied expression of genes related to root growth in sunflowers and worked on understanding the genetic basis of drought-tolerant root phenotypes in maize.
 

Currently Su is a postdoctoral researcher working with Professor Peidong Yang at University of California, Berkeley. His current research focuses on the bioelectrochemical CO2 fixation and N2 reduction. He received his Ph.D. degree in Chemistry on September 2017, with Professor Peidong Yang at University of California, Berkeley. During the Ph.D., he was awarded the MRS Graduate Student Award and the Chinese Government Award for Outstanding Self-financed Student Abroad. Su obtained his B.S. degree in Chemistry from University of Science and Technology of China on 2012, before joining the Peidong Yang Group as a graduate student.

Chris Szikszai
Chris Szikszai
Areas of Interest:

Chris Szikszai worked with the Waymouth group, summer of 2017, testing feasibility of extruding and printing PHBV (poly-3-hydroxybutyrate-co-3-hydroxyvalerate). Aided by Professor Dan Strauss from SJSU and Naomi Clayman, Chris used analytical techniques such as DSC, GPC, and an Instron tensile tester to characterize the biopolymer: before extrusion, prior to printing, and after printing.  

tacken-headshot
Tom Tacken
Areas of Interest:

Tom is a Visiting Scholar from the Netherlands completing the research for his master thesis in the Peidong Yang Group. His work is focused on the microbial synthesis of ammonia from dinitrogen gas. Ammonia is essential for a successful manned mission to Mars. However, it is not feasible to achieve the current production method, the Haber-Bosch process, on Mars due to limited resources. Therefore, the search for an alternative way to produce ammonia is paramount to the success of this mission. The reduction of dinitrogen gas with a solar-driven potential and bacteria as catalysts is a very promising way of achieving this.

Dr. Trenton (Trent) Smith is an Associate Professor of Biology at Simpson University in Redding, California. He received his Ph.D. in the lab of Dr. Vicki Vance at the University of South Carolina in 2001, studying viral suppression of RNA interference in plants. Specifically, he generated and studied suppression of RNAi in transgenic Arabidopsis thaliana expressing the helper component proteinase from Turnip Mosaic Virus. In early 2018, Dr. Smith joined with the lab of Dr. Karen McDonald and Dr. Somen Nandi at UC Davis, as a visiting scientist. He is designing systems to express cell wall-degrading enzymes in potato, as part of the biofuels work of CUBES.
 

HaoZhang headshot
Hao Zhang
Areas of Interest:

Hao Zhang is a 4th year graduate student in Chemistry at University of California Berkeley with Prof. Peidong Yang. She received her B.S in Material Science and Engineering from University of Science and Technology of China (USTC) in 2014.
Her research is focused on the CO2 fixation via photosynthetic biohybrid systems(PBSs) in the MMFD division. The non-photosynthetic bacteria could be photosensitized by using the semiconductors to reduce the CO2 into multicarbon products, such as acetate, ethanol, and other valuable products. Such PBSs inherits both the high light-harvesting efficiency and the superior catalytic performance from solid-state semiconductors and whole-cell microorganisms, respectively.