Alumni

Anthony Abel is a Ph.D. student in Chemical Engineering in the Clark Laboratory at UC Berkeley. Previously, he earned his B.S. in Chemical Engineering and M.S. in Materials Science at Drexel University in Philadelphia, PA, where he developed solution deposition techniques for inexpensive semiconductor materials. He has previously worked for the National Renewable Energy Laboratory, where he designed reactors for the sustainable production of hydrogen via photoelectrochemical water splitting.
Anthony’s research interests lie at the intersection of chemical engineering, materials science, and microbial synthesis. Within CUBES, he will focus on the simulation and design of hybrid bioinorganic reactors and engineering microbes to function optimally within this artificial environment.
In his spare time, Anthony is a mentor for Bay Area Graduate Pathways to STEM, and enjoys reading science fiction and playing squash.

Joyleen is currently a freshman, studying aerospace engineering in the first ever class of that major at UC Berkeley. She was always interested in space exploration, which is why she joined CUBES with Aaron Berliner to work in the Systems Designs and Integration Division. Her other interests include tennis, reading, and adopting cats.

Jeremy Adams is a Ph.D. student in Chemical and Biomolecular Engineering at UC Berkeley, currently working in the Clark Lab. He received a BSE in Chemical Engineering from Arizona State University in 2017. Jeremy’s research interests lie in the intersection of synthetic biology and biochemical engineering, particularly towards the development of sustainable biomanufacturing processes. His work in CUBES involves engineering lithoautotrophic microbes to convert Mars-available resources into useful products, as well as engineering export pathways of those products to simplify downstream separation processes. In his free time, Jeremy enjoys traveling and scuba diving.

Dexter is a first year Ph.D. student in Chemical Engineering at UC Davis in the McDonald-Nandi Lab. He received his B.S. in Chemical Engineering from Columbia University, New York and his B.A. in Chemistry from University of Puget Sound, Washington through a Dual Degree Program. He is currently developing stable lines of transgenic lettuce, which express a parathyroid hormone fusion protein.

Artavazd Badalyan received a Diploma in chemistry from the Lomonosov Moscow State University in Russia and a Ph.D. in analytical biochemistry in the group of Prof. Ulla Wollenberger from the University of Potsdam in Germany where he focused on the bioelectrochemistry of molybdenum hydroxylases and on the development of electrochemical biosensors. He was a postdoctoral research associate with Prof. Shannon Stahl at the Department of Chemistry at the University of Wisconsin-Madison in the field of organic electrochemistry where he developed a novel bioinspired electrocatalyst system for the low-potential alcohol oxidation. Following a position at the Draegerwerk AG as a project leader in the field of electrochemical sensors, he joined the group of Prof. Lance Seefeldt at the Department of Chemistry and Biochemistry at the Utah State University and works on the (bio)electrocatalysis for nitrogen fixation.

Alex is a second year Aerospace Engineering student at the University of Florida. He is working under Dr. Amor Menezes in the Systems Design and Integration division. He has been a member of CUBES since November 2018. He is interested optimizing mission parameters to minimize mission costs and increase viability. His work at the University of Florida also includes the applications of model-free control to space missions.

Sophia is a sophomore at UC Berkeley studying Molecular & Cellular Biology and Economics. She was initially drawn to CUBES because of their work with In-situ Resource Utilization and is interested in studying different forms of life in strenuous environments. In her free time she enjoys surfing, playing soccer and reading novels.

Brooklyn Brace is a third year undergraduate student at UC Berkeley studying Molecular and Cell Biology. She has an interest in microbiology and genomics and how they apply to bioengineering. In the Arkin Lab, Brooklyn is currently working in the MMFD division investigating genes important for nitrogen fixation. Previously, Brooklyn worked in a synthetic biology lab at Columbia University working on the development of a multiplexed drug screening platform.

Daniel received his Ph.D. in Plant Biology with a designated emphasis in biotechnology from the University of California, Davis in 2017. Daniel’s research utilized a multidimensional approach to better understand the immune response initiated by XA21, a rice immune receptor that provides resistance to bacterial leaf blight (BLB) disease. As part of his Ph.D. studies, Daniel also performed research at the International Rice Research Institute in the Philippines, where he used marker-assisted selection to develop stacked resistance to BLB in the Swarna-Sub1 rice variety, which is tolerant to flooding and favored by millions of subsistence farmers in India. Daniel also interned with East-West Seed Group in Thailand, where he developed genetic markers to distinguish isolates of Colletotrichum spp. causing pepper anthracnose and Fusarium oxysporum f. sp. momordicae causing Fusarium wilt on bitter gourd.
Daniel is currently a post-doctoral scholar in Devin Coleman-Derr’s group at the University of California, Berkeley where he is exploring ways to minimize the challenges of extraterrestrial farming, including finite resources and limited growing space within controlled-environment agricultural systems. Focusing on rice, Daniel is using a microbiome-based approach to select plant growth promoting bacteria that enhance phosphorus and water-use efficiencies. Additionally, he is using CRISPR/Cas9 based-gene editing to generate rice plants with increased conversion efficiency of light into edible biomass.

Rong Cai is a postdoc in the Yang Group at the University of California, Berkeley. She received her Ph.D. degree in Chemistry Department from the University of Utah in 2019. Her research focuses on understanding the electron metabolism of microbes and designing inorganic material to deliver electron to bacteria efficiently.

Cameran Casale is a second year undergraduate student at UC Berkeley studying bioengineering. She is currently working with Aaron Berliner in the Systems Design and Integration Division of CUBES. In her time at this lab, Cameran is interested in exploring different biological applications within space systems, such as the utilization of biologically derived materials in the development of nanoscale devices. When she's not in the lab or studying for school, Cameran is usually out playing beach volleyball or bass guitar.

Stefano Cestellos-Blanco is a Ph.D. student in Materials Science & Engineering in the Yang Group under the direction of Professor Peidong Yang at the University of California, Berkeley. He received his B.S. degree in Chemical Engineering from Stanford University in 2016. His research interests lie at the intersection of inorganic materials and molecular biology. He envisions a future in which nanoengineered materials work in cooperation with the natural world. Stefano is investigating biohybrid catalytic systems for the fixation and utilization of CO2 and N2 in the MMFD division of CUBES.

Skyler Chan is studying Electrical Engineering and Computer Science at UC Berkeley, and he has wanted to become an astronaut since he was 3. In high school, he learned how to fly gliders, and was involved in various student-led space organizations. One of his goals is to make humanity an interplanetary species within our lifetime, and he joined CUBES to advance this mission. Currently, he builds in the Systems Design and Integration Division of CUBES. He is interested in exploring sustainable design on Mars, such as, how to build the first self-sufficient Martian cities. To Skyler, the idea that the choices we make designing the first Martian habitats today will have an impact on the future of humanity never gets old. In his free time, he can be found flying drones, PR-ing at the gym, and filming videos with friends.
Adam is from Elk Grove, CA, but was born in San Francisco and is well-accustomed to life in the Bay Area. He became interested in engineering when he was very little, building Lego sets and working on home construction projects with his uncle. Not knowing much about bioengineering coming into university, Adam tried learning about different disciplines alongside his initial classes and prioritized gaining skills over hyper-focusing on curriculum, which is where his passion for software engineering developed. His goal is to become a software engineer at a biotech company, so that he can use his programming skills and knowledge of biological systems in tandem to make software and tools that can help the next generation of scientists manipulate and visualize experiments in a more concise and efficient way. Outside of engineering, he loves making art (painting and drawing with any medium he can get his hands on), watching k-dramas and anime, cooking with his friends, and hiking. After graduation, he hopes to travel to places like South Korea and France to learn more about other cuisines and cultures. Adam believes that we all owe it to ourselves to try as many things as possible, so we can find out what we like and don't like to do, and of course where we are exceptional and what needs improvement.
Zain earned a BA in Planetary Science from UC Berkeley. He developed an interest in spaceflight at a young age watching launches at Cape Canaveral. Even as a child he was interested in sustaining human life in space. He hopes to live to see the day when humanity has a permanent Mars colony. On top of his interest in space, Zain has an interest in medicine and hopes to eventually be a physician-scientist. He discovered his interest in medicine after taking biochemistry classes, where he became fascinated by the interconnected chemistry of the human body. In the future, Zain plans to attend medical school and apply in depth knowledge of human biology to space colonization efforts. He joined CUBES just after graduating from UC Berkeley in May 2022. At CUBES, he helps define states for bioastronautics software under Aaron Berliner. In his free time, Zain likes to make music on his guitar and piano, hike, and volunteer with the American Lung Cancer Screening Initiative.
Wesley Chuang is a 1st year Ph.D. student in Chemistry at the University of California Berkeley in Professor Yang's Group. He received his B.S. degree in Chemical Engineering from National Taiwan University in 2017 and M.S. degree in Chemical and Biomolecular Engineering from University of California Berkeley in 2019. His research interest is focused on the CO2 fixation via bio-hybrid system in the MMFD division of CUBES.

Calvin (Tae Hyun) is pursuing his PhD in Civil and Environmental Engineering at the University of Alberta, Canada, under the supervision of Professor Bipro Dhar. His research scholarly pursuits center around advancing microbial electrochemical technologies, focusing on the development of bioelectrochemical sensors for the detection of naphthenic acids in oil sands process water, as well as exploring microbial electrolysis cell-assisted anaerobic digestions and microbial electrosynthesis systems for the conversion of carbon dioxide into biomethane and for biogas upgrading applications. Presently, he is a visiting scholar in Professor Craig Criddle's laboratory at Stanford University. As part of the CUBES project, Calvin works under the mentorship of Professor Craig Criddle and Dr. Nils Averesch, where he is involved in converting methane and methanol into para-hydroxybenzoic acid (pHBA) using methanotrophs through metabolic and genetic engineering. His academic excellence is also recognized through prestigious awards such as the Izaak Killam Memorial Graduate Scholarship and the Canada Graduate Scholarship from the Natural Sciences and Engineering Research Council of Canada.

Doug Clark is the Gilbert Newton Lewis Professor in the Department of Chemical and Biomolecular Engineering and the Dean of the College of Chemistry of the University of California Berkeley.
Dr. Clark’s research interests are in biochemical engineering and biocatalysts. His research is in the field of biochemical engineering, with particular emphasis on enzyme technology, biomaterials, and bioenergy. Current projects include the structural characterization and activation of enzymes in non-aqueous media, the development of metabolic biochips for high-throughput catalysis and bioactivity screening, protein design and assembly for the development of advanced biomaterials, and enhanced conversion of lignocellulosic feedstocks to biofuels.

Dr. Coleman-Derr received his graduate education at the University of California at Berkeley in the lab of Dr. Daniel Zilberman in the Plant and Microbial Biology Department, studying mechanisms of epigenetic regulation of transcription in the model plant Arabidopsis. He then completed a post-doctoral research position at the Joint Genome Institute in the group of Dr. Susannah Tringe studying the microbial ecology of the root systems of desert succulents; in this role he also served as bioinformatic support on multiple JGI collaborative metagenomic research efforts involving analysis of 16S rRNA tag data from a variety of environmental and host-associated samples. Dr. Coleman-Derr now leads a research team for the United States Department of Agriculture’s Agricultural Research Service, where he aims to improve our understanding of the effect of abiotic stress on the plant microbiome, and to help identify plant growth promoting microbes capable of alleviating drought stress in their plant hosts. Current research involves several projects related to drought stress response in Sorghum bicolor (sorghum), including investigations into the changes in rhizosphere community composition under drought stress, a genome wide association study to reveal host loci controlled by drought tolerance-inducing root endophytes, and a screen of a collection of cereal endophytes for the ability to confer drought tolerance in sorghum. Dr. Coleman-Derr was awarded the USDA’s Scientist of the Year Award in 2017 for his contributions in this area.
Jesse Delzio is a third year biochemical engineering undergraduate at the University of California, Davis. He began research with Dr. Somen Nandi and Dr. Karen McDonald in July 2017 and is currently researching drug purification through the functionalization of viral coat proteins to be used for simpler isolation in low resource environments such as Mars. He is currently working under the mentorship of Matthew McNulty. His interests include chemical engineering, biotechnology, and plant engineering. Jesse has investigated the expression and capture of recombinant parathyroid hormone from different lettuce varieties. He has also provided calculations of land area and expression levels required to sustain a team of astronauts on Mars.
Prior to his research in the McDonald-Nandi lab, Jesse worked as a lab intern for a chemical company in San Diego called Designer Molecules Inc. His main interests were chemistry and physics. He applied to the University of California, Davis and studied chemical engineering for his first two years. After discovering a project involving biomanufacturing for deep space exploration led by Dr. McDonald, Jesse's interest in biotechnology and biology grew, urging him to switch majors to biochemical engineering. He has been researching for the Center for the Utilization of Biological Engineering in Space on their Mars exploration project ever since.

Anna received her B.S in Biotechnology from National Technical University of Ukraine and M.S. in Microbiology from the University of Oklahoma, where she was a Fulbright Scholar. She got her Ph.D. in Biological Engineering from Utah State University. Her M.S. thesis research focused on characterization of ultra-small microorganisms from anoxic sulfur-rich pond using bioinformatics. For her Ph.D. research, Anna worked with local municipal and industrial wastewater treatment facilities to improve microbial transformation of organic waste compounds and algal biomass into valuable bioproducts, such as biogas and bioplastic. She also developed a computational model describing anaerobic microbial granulation in the upflow anaerobic sludge blanket reactors.
Anna is currently a postdoc in the group of Prof. Lance Seefeldt at Utah State University and is working on engineering nitrogen-fixing purple non-sulfur bacteria and bioprocess design.
Saige is a fourth year at the University of Florida studying Aerospace Engineering. She is working with Dr. Amor Menezes under the Systems Design and Integration division. She is interested in the effects of space travel on biological systems and using alternative solutions to mitigate problems cause by long term missions.

Kristian is an NSERC post-doctoral fellow in Environmental Engineering and Science at Stanford University. His current research focuses on: Hard-wiring bacteria in a microbial battery, salinity gradient energy production from a mixing entropy battery, and PHB bioplastic production from C. Necator. His PhD was in Chemical and Biological Engineering from the University of British Columbia in Vancouver.

Jithran Ekanayake grew up in Sri Lanka and moved to the United States in 2016 to study biology at Carleton College, MN on a Starr Foundation scholarship. He is now a graduate student in the Department of Agricultural and Biological Engineering at the University of Florida, where he works with Dr. Amor Menezes and the Systems Design and Integration Division of CUBES to develop experimentally-validated models of space biomanufacturing processes in low-shear modeled microgravity.
Outside of space synthetic biology, he is interested in pararescue, resilience education, and how space exploration could function as a propellant for the peaceful unification of people and nations across the globe.

Pauline received a bachelor's degree and a master's degree in pharmaceutical sciences from the University of Lyon, France. She is currently a visiting scholar in the Department of Chemical Engineering in the McDonald Laboratory at UC Davis.

Daphne is an undergraduate student at Purdue University studying Engineering Technology Education with minors in Computer Information Technology, Global Studies, Biological Sciences, Biotechnology, and Design & Innovation. She has previously been involved with the HHMI SEA-PHAGES project at Purdue University discovering and characterizing novel bacteriophages. Additionally, she has previously written and edited for a variety of science communication publications.
Within CUBES, she is working with Kyle Sanders on the Numerical Modeling team as a SULI intern, where she is using Julia to analyze relationships within a microbial ecosystem for implantation into the rhizosphere of O. sativa.

Skyler Friedline received his BS in Biochemistry and Molecular Biology from UC Santa Barbara in 2016. He is new to the fields of synthetic biology and microbial engineering but is motivated to learn quickly and make an impact. He began working as a research associate and lab manager in Adam Arkin's UC Berkeley Lab in 2019. He is interested in the development of microbes enabling closed loop living in space and on earth.

Wakuna is a PhD candidate in the environmental engineering program working with Prof. Craig Criddle. Her research focuses on the microbial degradation of methane in mixtures (biogas and natural gas) for the production of biodegradable polymers called polyhydroxyalkanoates (PHAs). Wakuna is interested in understanding the impact these methane mixtures have on microbial communities, the dynamics between the microbial interactions under certain complex conditions, while optimizing the polymer production process and bacterial growth rates. In addition to research, Wakuna is quite passionate about tutoring and mentoring.

Wenyu Gu is currently a postdoc at Stanford University.

Soumyajit Sen Gupta has been a member of the SDID division of the CUBES since March 2018. Prior to joining the CUBES as a post doctoral research associate with Dr. Amor Menezes, he was a doctoral research scholar at Indian Institute of Technology, Bombay since 2012. His doctoral thesis was on integrated plant-wide optimization of microalgae biorefinery, co-producing fuel, food and chemicals. He is a Bachelors' (2010 batch) from Jadavpur University and Masters' (2012 batch) from Indian Institute of Technology, Kharagpur; both these degrees have been in the discipline of Chemical Engineering. His research interests are in the area of systems design, modeling and optimization, renewable energy and process systems engineering.

Derek F. Harris is a Postdoctoral Fellow in the Seefeldt group at Utah State University. He received a B.S. in biology from Dixie State University and a Ph.D. in biochemistry from Utah State University.
Dr. Harris is interested in the mechanism and evolution of nitrogenase enzymes, as well as applications of nitrogenases unique catalytic properties.

Avery is a third year undergraduate student at UC Berkeley, currently working towards a double major in Economics and Molecular and Cell Biology with an emphasis in developmental genetics. She is interested in how the intersection of her two academic disciplines come together to further the research behind space exploration. In CUBES, Avery is working towards optimizing an elemental balance in a martian biomanufacturing system. Previously, Avery worked at the University of Michigan on research relating to metabolic control in the immune system and the development of new drugs for the treatment of autoimmunity and cancer.
In the future, Avery would like to pursue a career in the biotechnology industry.

Davian is a second year Berkeley undergrad studying Electrical Engineering and Computer Science. In CUBES, he is working on the interface for space resource modeling software. Davian is also investigating phages in the gut microbiome as part of ENIGMA, and makes vector graphics.

Brendan, originally from Austin, TX, is a second-year chemical engineering major with a concentration in biotechnology. His research interest lies in the intersection of chemical engineering and synthetic biology. As a part of CUBES, Brendan is currently working with postdoctoral scholar Jacob Hilzinger to genetically engineer cyanobacteria to produce useful biomass in both Earth-based and Mars-based economies.

Mackenzie Jones received her B.S. in Botany from Utah Valley University. She is currently a graduate student at Utah State University working in the Crop Physiology Laboratory in pursuit of a Ph.D. in Plant Science. Her interests of study include plant nutrition, soil fertility, and nutrient cycling. For the CUBES effort, Mackenzie's research will focus on optimizing plant nutrition in controlled environments for long-term space travel.
Farrah is a second year undergraduate student studying Bioengineering and Electrical Engineering and Computer Science. In the past, she did computational biology research at UCSD working on genome-scale metabolic modeling. She joined CUBES in late Fall of 2021 working under Aaron Berliner. Currently, Farrah is working with Davian to create a crew-member model that simulates how crew members consume and waste resources during space travel and extravehicular activity.

Alexander Kamentz is a 2nd year Ph.D. student in Mechanical Engineering in the SYBORGS Lab under Amor Menezes at the University of Florida. He received his B.S. degree in Mechanical Engineering from the University of Florida in 2019. His research interest is focused around stochastic control theory in the SDID division of CUBES.

Kalimuthu Karuppanan is a Postdoctoral scholar in the Department of Chemical Engineering, at the University of California, Davis. He received his Ph.D. in Biotechnology and M.S. degree in Plant Science from Madurai Kamaraj University, India. Since he has been at UC Davis Dr. Karuppanan has contributed to a number of research projects funded by DARPA, DTRA, and NSF and he has mentored many Ph.D. students and undergraduate researchers. He was the instructor for ECH161L, Bioprocess Engineering Laboratory course, in 2014 at UC Davis. He received the campus-wide Award for Excellence in Postdoctoral Research in 2016 and Phil Thai Memorial Award in Medicine for Lung Research in 2015 for his outstanding research performance. He is a co-inventor in a recently filed patent on Novel Fusion Proteins for Treating Inflammatory Diseases. Dr. Karuppanan is a CUBES Co-PI and member of the Food and Pharmaceutical Synthesis Division.
His research is in protein biotherapeutics for treating infectious and non-infectious diseases. He has extensive experience in recombinant protein bioprocessing in planta. His work includes gene design, designing vector systems for agrobacterial-mediated gene transfer in plants, protein expression using plants and plant cell suspension cultures, protein purification using affinity and traditional chromatography systems, biophysical and functional characterization of recombinant proteins, and drug efficacy improvement by enzymatic glycan modification.

Dania Khan is a fourth year undergraduate student at UC Berkeley studying chemical engineering. In CUBES, her work involves the simulation of hybrid bioinorganic reactors. Prior to transferring to Berkeley, she was a student at Foothill Community College and worked on research related to asphaltene aggregation at oil/water interfaces, as a part of the Fuller Group at Stanford.
Imran Khan received PhD fellowship from German Academic and Exchange Service (DAAD) for his doctoral study at Institute for Molecular Biotechnology, RWTH Aachen University, Germany. He also served Vienna Institute for Biotechnology, Vienna, Austria, as researcher where he investigated expression and targeting of recombinant proteins in plant tissues. He also received research funding as PI and supervised PhD and master students working as Assistant Professor at Center for Interdisciplinary Research, Islamabad, Pakistan. He completed his postdoctoral study from University of Bonn, Germany that was also funded by DAAD, Germany. In 2019, Imran received Penn Biomedical Postdoctoral fellowship for postdoctoral study at School of Dental Medicine at University of Pennsylvania, Philadelphia, USA, where he worked on oral delivery of plant made biopharmaceuticals using Chloroplast production system, in collaboration with Takeda, Japan. He joined Dr. McDonald/Nandi lab in 2021 at University of California, Davis, USA, as Assistant Project Scientist. His current research focus on development of platform technologies for bio-manufacturing on Mars to provide food and pharmaceuticals for colonists, funded by National Aeronautics and Space Administration (NASA), USA.

Ji Min Kim is a 1st year Ph.D. student in Materials Science and Engineering at the University of California Berkeley in the Yang Group. She received her B.S. degree in Materials Science and Engineering from Hanyang University in 2016 and M.S. degree in Materials Science and Engineering from Seoul National University in 2018. Her research interest is focused on the CO2 fixation via a semiconductor nanowire-bacteria hybrid system in the MMFD division of CUBES. The system utilizing light capturing high surface area nanowire array and acetogenic anaerobes enables the photoelectrochemical acetic acid production with long-term stability.

Paul Kusuma received a bachelor’s degree in horticulture from the University of Florida, and is now pursuing a PhD in plant physiology at Utah State University.

Rhesa discovered her scientific interest many years ago in a high school chemistry class. Her inspirational teacher, Mr. Best—the stereotypical science geek with large bug-eye glasses—taught Rhesa many scientific lessons, but perhaps the greatest was that science is not just for nerdy boys (as her flawed logic thought), it is for anyone.
Currently, a Ph.D. student in the Department of Chemistry and Biochemistry at Utah State University, Rhesa can be found at the laboratory bench doing research focused on understanding and harnessing the amazing abilities of microorganisms. Specifically, she studies the microbial transformation of nitrogen (N2) to ammonia (NH3). This process is a critical part of nature as the majority organisms cannot utilize N2 directly, but need it in a form like NH3 for growth and reproduction. The few microbes that facilitate this conversion provide valuable insight into one of the most biologically challenging reactions and may serve as a catalyst for developing systems for sustainable ammonia production on Mars.
In additional to research, Rhesa also serves as a science reporter for Utah Public Radio and plans to pursue a career in science education and/or communication. Her excitement for not only doing science, but communicating it just might stem from growing up doing musical theater, which she loves. She also enjoys experiencing other cultures, and hot-potting is always on her list of things to do (and yes, it’s partly to see the beautiful microbial mats)!
Anderson Lee is a third-year undergraduate student at UC Berkeley studying Bioengineering with a focus on Synthetic and Computational Biology. He is currently optimizing the production of biopharmaceuticals to be utilized during space travel. In previous companies, he has developed an ELISA procedure to determine the concentration of a tumor-detecting drug in biological samples and enhanced a mobile, quick diagnostic machine that scans for viruses. Previous to the Arkin Lab, he worked in Mohammed Mofrad's Cell and Biomechanics Laboratory at UC Berkeley where he used neural networks with backpropagation to predict a virus' host based on the genome of the virus.
In the future, he sees himself using synthetic biology to conquer problems inherent to the nature of space travel. He believes that technology already present in nature and perfected with evolution can be the key to send humans to other planets.

Elizabeth (Libby) Lineberry is a Chemistry Ph.D. student in the Yang Lab at the University of California, Berkeley, where she works on photosynthetic biohybrids. She received her B.S. in chemistry from Bethany College in 2021. Libby’s research interests include photoelectrochemistry, microbiology, and the combination of these fields to lead to a highly selective artificial photosynthesis system.

George earned a B.S. in Chemical Engineering and a M.S. in "Process, Simulation, Optimization, and Control" from the University of Patras (Greece) in 2016 and 2018, respectively. While there, he was a member of the “Laboratory of Fluid Mechanics and Rheology” where his research focused on the rheology and numerical simulation of flows involving complex yield-stress fluids. He is now pursuing a PhD in Chemical Engineering at University of California, Berkeley, working in the “Process Systems and Control Laboratory”. His current research interests lie in learning-based optimal control of complex systems that intrinsically contain uncertainties. As a member of CUBES, he will be part of the SDID, focusing on systems engineering, process modelling, dynamic optimization and control. His motivation for studying Chemical Engineering was his particular interest in mathematics as a high-school student, as well as his enthusiasm in applying scientific principles towards solving real-world problems.

Matt received his B.S. in Chemical Engineering from the University of Massachusetts, Amherst. He previously worked as a process engineer for Sanofi Genzyme. His current research focuses on developing a novel biologically-derived bioseparations platform for limited resource environments.

Jorge is originally from Chicago where he attended Loyola University Chicago and received his B.S. in Environmental Science with a Chemistry Minor. After his undergraduate studies, he attended Stanford where he obtained his M.S. in Environmental Engineering and where he has continued as a PhD student working with Professor Craig Criddle. His research focuses on biotechnology with an emphasis on efficiently utilizing waste streams to produce biological materials (e.g., bioplastics, biofuels). As part of the CUBES effort, Jorge's research involves identifying organisms that can thrive on the limited amount of resources available for long-range space travel.

David Merkley is an undergraduate student at Utah State University in his Junior year. He is studying computational mathematics and pre-med. David is from Centerville, Utah and has 3 brothers. When he is not studying for school, you can find David either wakeboarding or skiing the slopes.
David has always wanted to help out other people, which is one reason that led to him towards becoming a physician. David has always said that he wanted to feel like he was helping to make a difference in the world. Another reason is that the human body fascinated him. Wondering how medications interacted with the cells, enzymes, and other elements of the body was something that was always a question for him. He wanted to understand more about the human body and how all of the different parts worked in unison.
One way that you could describe David would be, welcoming and hilarious. He is genuinely concerned with others surrounding him and wishes the best for them. He can always make someone smile, even when they're having a rough day. Individuals seem to feel at ease around him.

Ali Mesbah is an Assistant Professor in the Department of Chemical and Biomolecular Engineering at the University of California Berkeley. Dr. Mesbah's research interests are in optimization-based systems analysis, fault diagnosis, and predictive control of uncertain and stochastic systems.
Before joining UC Berkeley, Dr. Mesbah was a senior postdoctoral associate at MIT. He holds a Ph.D. degree in systems and control from Delft University of Technology. Dr. Mesbah is a senior member of the IEEE and AIChE. He was awarded the AIChE's 35 Under 35 Award in 2017 for his contributions in the area of systems and process control.

Mia Mirkovic is a second-year undergraduate student in the Electrical Engineering and Computer Sciences department at the University of California, Berkeley pursuing mixed-signal processing and circuit design. Her interests include systems modeling and control, imaging, representation theory, modern music technology and history, and radio.
She works with Aaron Berliner on the development of Crucible, an open-source, 3D-printable chamber for space synthetic biology experiments, and mathematical models for Martian in-situ resource utilization for life support, power, and an integrated, multi-function, multi-organism bio-manufacturing system to produce fuel, food, and materials. These models will likely underlie a software package for accelerating mission design and simulation.
Dr. Takashi Nakamura received his Ph.D. in Aeronautics and Astronautics from MIT and his B.S. in Aeronautical Engineering from the University of Tokyo. Currently, he is the manager of Space Exploration Technologies at Physical Sciences Inc. (PSI), and has been involved in numerous R&D programs sponsored by NSF, NASA, DoE and DoD.
Dr. Nakamura has been developing, with funding from the Air Force and NASA, a unique space solar power system for power generation, propulsion, materials processing, and plant lighting in space. This concept is based on the use of optical fibers for transmission of solar radiation, the concept Dr. Nakamura pioneered in 1976 while he was at Japan's Electrotechnical Laboratory. Dr. Nakamura is an Associate Fellow of AIAA, a member of AAS and Sigma Xi.
Patrick is a first-year student in the Chemical Engineering department at UC Davis, where he works in the McDonald-Nandi lab. He earned his BS in Chemical Engineering at UC Berkeley. Patrick joined CUBES because he is passionate about biotechnology and hopes to improve the safety and feasibility of space missions.

Vince is a first-year Ph.D. student in chemistry at Stanford University; he is interested in creating biodegradable organic materials as well as designing materials processing techniques such as additive manufacturing in order to make functional parts from biodegradable materials feasible for replacing petroleum based plastics. His role in CUBES will be to create and optimism polymeric systems based on methanotrophic polyhydroxyalkanoate production for the closed-loop manufacturing of tools. Before starting his graduate work at Stanford, he studied mechanical engineering and chemistry at Colorado School of Mines where he created block copolymer materials for hydrogen fuel cell membranes and computed degradation mechanisms for small molecule bis-azide species. He also worked as a design engineer at RICOH where he designed, 3D printed, and tested small parts for improving large-scale ink-jet printer functions. Vince likes to hike and carve wood in his free time.

Lauren Payne is a second year undergraduate student at Utah State University studying Plant Science. She interns at the USU Crop Physiology Lab, assisting graduate students with experiments involving plant growth conditions. In CUBES, she aids Noah Langenfeld with projects in nitrogen recycling and nutrient optimization in hydroponic systems.

Max Perko is a third year chemistry undergraduate at Stanford, studying biosynthetic polyester vitrimers for additive manufacturing in the Waymouth lab. His research is being performed in conjunction with that of Vince Pane (of the Waymouth lab) and the Criddle lab (Stanford Biology), for the Center for the Utilization of Biological Engineering in Space (CUBES) on their Mars exploration project.
Kim is a second-year undergraduate student studying Bioengineering. She is interested in the applications of engineering and science in space exploration. In CUBES, she will be working on exploring species of cyanobacteria and developing a pan-genome.

Tiago is a visiting doctoral student from the Humans on Mars project of the University of Bremen, Germany. As a part of his doctorate project, he is looking to convert cyanobacterial biomass produced on Mars from in-situ resources into a plant fertilizer and other products of interest. To carry out this conversion both anaerobic digestion and bioelectrochemical systems are employed and explored within a wet lab and modelling context. The overarching goal is to explore Mars sustainably by harnessing local resources and reducing shipped payload mass. During his research stay, he will be working on the bioplastic production by C. necator and the modelling of the cyanobacterial biomass processing.

Lance C. Seefeldt is Professor of Chemistry and Biochemistry at Utah State University. He received his PhD in Biochemistry from the University of California at Riverside and was a Postdoctoral Fellow in the Center for Metalloenzyme Studies at the University of Georgia. He joined the faculty at Utah State University in 1993. He is the recipient of the D. Wynne Thorne Research Award and is a Fellow of the American Association for the Advancement of Science. He is the Utah State University Institutional PI and lead of the Microbial Media and Feedstock Division of CUBES.
Dr. Seefeldt’s research focus is on biological nitrogen fixation. He has been investigating the mechanism of activation of N2 by the bacterial enzyme nitrogenase. This work has recently lead to the insight that metal-hydrides are central to the reduction of N2 to NH3. He is also investigating how to grow nitrogen fixing bacteria with electrodes as a way to accomplish light-driven reduction of N2 and CO2 as a way to capture and make available these resources from the Martian atmosphere.

Will is an undergrad at UC Berkeley studying molecular biology and math. He is captivated by the potential of synthetic biology and the application of modern methods of engineering to biology whether in microbes, mammalian cells, or multi-organism communities. In CUBES, Will models and designs microbial communities for agricultural enhancement. Previously, he has worked on metabolic engineering for the production of biofuels and commodity chemicals, directed evolution for the bioremediative degradation of plastic, and microRNA circuits and protein engineering for immunotherapy.

Yuexiao Shen joined Prof. Peidong Yang’s group at UC Berkeley as a postdoc in October, 2017. He finished his Ph.D. from the department of Chemical Engineering at Penn State in 2016. During his Ph.D., he worked on several projects in the interdisciplinary areas of chemical engineering, biology, chemistry and material science. He was focused on developing bioinspired membranes using membrane proteins that mimic the rapid and selective transport as seen in biological membranes. He extended to explore the potential of mimicking biological channels and lipids using supramolecular chemistry and investigating them using biophysical techniques. Yuexiao finished his bachelor and master degrees at Tsinghua University, where he studied environmental engineering. His academic accomplishments include several high-quality publications in journals such as PNAS, JACS and Journal of Membrane Science (JMS), and have been recognized by nationwide academic organizations with a number of very competitive awards. Yuexiao has already been offered an assistant professor position at Department of Civil, Environmental, and Construction Engineering at Texas Tech.
Fengzhe is an undergraduate at Beijing Jiaotong University and now an exchange student at UC Berkeley studying computer science. He is interested in data mining, deep learning and interdisciplinary tasks. In CUBES, Fengzhe mainly works on modeling deep learning methods in dynamic systems. Previously, he worked in a computer science lab at Peking University on an information retrieval and recommender system.
Divya is a third year undergraduate student at UC Berkeley majoring in Bioengineering. She screens Spirulina mutants as they are generated and help in the development of better transformation methods for this organism in FPSD.

Jeffrey Skerker's research focuses on engineering complex traits in microbes using a systems metabolic engineering approach. He has worked on a variety of non-model bacteria and fungi and is particularly interested in developing methods for high-throughput genetics and genome engineering. In the CUBES program, he will help develop Arthrospira platensis (commonly known as Spirulina) as a source of nutrition and medicine. In the initial phase of this project, a basic genetic toolbox will be developed for this organism and then as proof of concept, a two-gene pathway for the production of acetaminophen (i.e. Tylenol) will be integrated into the genome. Although Spirulina is widely grown at the industrial scale as a nutritional supplement, very little strain genetic engineering has been reported in the scientific literature.

Spencer is originally from Colorado Springs. He received a B.S. in biochemistry from Brigham Young University - Idaho. Currently, he is pursuing a Ph. D in Biochemistry at Utah State University.
Mathangi Soundararajan is a PhD candidate from India currently at Utah State University advised by Lance Seefeldt. She has also been awarded the Presidential Doctoral Research Fellow by Utah State University. She majored in biotechnology in her high school, and went on to get her Bachelors in Biomedical Sciences from Sri Ramachandra University. In her junior year, she was awarded the Undergraduate Summer Research Fellowship by Sri Ramachandra University to study the effects of dairy intake on inflammatory biomarkers in people with Type 2 Diabetes. She also worked as a Research Assistant at the Institute of Mathematical Sciences during her final year, where she studied the genetic susceptibility of Type 2 Diabetes patients to colorectal cancer using bioinformatics methods. Graduating at the top of her batch, she was awarded the 'Best Outgoing Student' medal as well. Her current research interest includes understanding and applying biological nitrogen fixation in bioelectrochemical systems. Her undergraduate research experience has also contributed to her interest in understanding metabolism and the effects of derangements in metabolism. When she is not losing track of time in the research lab, you can find her catching up on TV series and Netflixing.
Alex Starr is a second year undergraduate at University of California Berkeley with interests in synthetic and molecular biology, applied math, artificial intelligence, and the utilization of biology in space exploration. As part of CUBES, he is working to develop a system for the detoxification and enrichment of Martian regolith using the perchlorate reducing bacterium Azospira suillum PS. Prior to joining CUBES, Alex studied expression of genes related to root growth in sunflowers and worked on understanding the genetic basis of drought-tolerant root phenotypes in maize.

Alex graduated from Georgetown University in 2014 with a B.S. in Environmental Biology with a focus in community ecology. Following graduation, he moved to the University of Kentucky to study how bacterial symbionts mediate insect ecology in agricultural systems.
Now, pursuing a PhD in Plant Biology at UC Berkeley, Alex studies plant-associated microbial communities from shoots to roots. In cassava, a tropical root crop, Alex investigates the phyllosphere ecology and carryover of the microbiome between planting seasons. For CUBES, he aims to construct synthetic bacterial communities via host-mediated selection to better grow rice in space. As both a Trekkie and wannabe farmer, Alex is very excited to be a member of FPSD.

Currently Su is a postdoctoral researcher working with Professor Peidong Yang at University of California, Berkeley. His current research focuses on the bioelectrochemical CO2 fixation and N2 reduction. He received his Ph.D. degree in Chemistry on September 2017, with Professor Peidong Yang at University of California, Berkeley. During the Ph.D., he was awarded the MRS Graduate Student Award and the Chinese Government Award for Outstanding Self-financed Student Abroad. Su obtained his B.S. degree in Chemistry from University of Science and Technology of China on 2012, before joining the Peidong Yang Group as a graduate student.
Chris Szikszai worked with the Waymouth group, summer of 2017, testing feasibility of extruding and printing PHBV (poly-3-hydroxybutyrate-co-3-hydroxyvalerate). Aided by Professor Dan Strauss from SJSU and Naomi Clayman, Chris used analytical techniques such as DSC, GPC, and an Instron tensile tester to characterize the biopolymer: before extrusion, prior to printing, and after printing.
Tom is a Visiting Scholar from the Netherlands completing the research for his master thesis in the Peidong Yang Group. His work is focused on the microbial synthesis of ammonia from dinitrogen gas. Ammonia is essential for a successful manned mission to Mars. However, it is not feasible to achieve the current production method, the Haber-Bosch process, on Mars due to limited resources. Therefore, the search for an alternative way to produce ammonia is paramount to the success of this mission. The reduction of dinitrogen gas with a solar-driven potential and bacteria as catalysts is a very promising way of achieving this.

Nishi is a fourth year undergraduate student at UC Berkeley with a major in chemical engineering and a minor in data science. In CUBES, she is working on using data-driven methods to explore the integrated design and control of biomanufacturing systems relevant to carbon fixation and polymer production. Some activities she likes to do are baking, dance fitness and watching television.
Dr. Trenton (Trent) Smith is an Associate Professor of Biology at Simpson University in Redding, California. He received his Ph.D. in the lab of Dr. Vicki Vance at the University of South Carolina in 2001, studying viral suppression of RNA interference in plants. Specifically, he generated and studied suppression of RNAi in transgenic Arabidopsis thaliana expressing the helper component proteinase from Turnip Mosaic Virus. In early 2018, Dr. Smith joined with the lab of Dr. Karen McDonald and Dr. Somen Nandi at UC Davis, as a visiting scientist. He is designing systems to express cell wall-degrading enzymes in potato, as part of the biofuels work of CUBES.

Kyle Valgardson bachelors of science Biochemistry from Utah Valley University and is currently pursuing a doctorate degree in biochemistry at Utah State University.

Gretchen Vengerova is a third year undergraduate student at UC Berkeley, studying bioengineering. She is interested in applying bioengineering concepts to conservation efforts. Previously she worked at CSU San Marcos, studying the transcriptomics of algae. In CUBES, she is working to study potential loop closure processes in a Martian biomanufactory. In the future, she hopes to use loop closures concepts to decrease terrestrial waste and pollution, but she would also enjoy more opportunities to merge bioengineering with space.

Anya is a graduate student at the University of Florida getting her Ph.D. in Biomedical Engineering with Professor Menezes. Her interests include the application of synthetic biology for medical use in space to better support human space exploration.
Prior to the University of Florida, she received her B.S. in Biomedical Engineering at Columbia University in New York City, where she also competed as the Payload Lead on the university’s rockets team. There, Anya also worked on developing microfluidic devices for cancer diagnostics.
She is originally from Fort Lauderdale, Florida and in her spare time enjoys painting and arts and crafts!

Tyler Wallentine is an undergraduate student at Utah State University pursuing Bachelor of Science degrees in biochemistry and biological engineering. Tyler is originally from Meridian, Idaho and comes from a family of nine. He has a passion for space exploration and wants to see the establishment of a Martian colony within his lifetime. He intends to apply his education in engineering and chemistry to help in this endeavor. His interests include chemical engineering, space system development, and environmental biotechnology. He enjoys 3D design and printing, both as a hobby and as a means of accomplishing his engineering goals. He intends to pursue a Ph.D. in bioengineering following his undergraduate studies to further progress towards a research career.
Tyler is currently working with the Microbial Media and Feedstocks Division (MMFD) of NASA CUBES. He has been continuing development of an anaerobic photobioreactor for Rhodopseudomonas palustris NifA*. He is also evaluating the effectiveness of R. palustris to utilize planetary base wastewater to grow and perform nitrogen fixation, to maximize in-situ resource utilization.
Tyler is an avid runner, having participated in both track and cross country in high school. During that time, he ran a marathon and has a personal mile record of 4:44. He also boxes in his free time. He enjoys drawing, painting, and graphic design. He also enjoys movies, camping, and writing.

Nicholas Watanabe is a Ph. D. student in chemistry at the University of California, Berkeley, where he joined the Yang lab in 2021. He received his B.S. in chemistry from Lehigh University in 2018. Nicholas’ research interests lie in using light to power reactions and processes, such as photo(electro)chemical fixation of carbon dioxide by acetogens. To this day, he still finds microbes and all that they can do fascinating, whether it is saving the world one CO2 molecule at a time or placing the finishing touches on tea, coffee, or dry-aged meats.
Robert Waymouth is the Robert Eckles Swain Professor in the Department of Chemistry at Stanford University. Dr. Waymouth investigates new catalytic strategies to create useful new molecules, including sustainable polymers, synthetic fuels, and bioactive molecules. In one such breakthrough, Professor Waymouth and IBM researcher Jim Hedrick opened a new path for production of environmentally sustainable plastics and improved plastics recycling, earning recognition in the 2012 Presidential Green Chemistry Award.
The Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. The Waymouth group pioneered the development of catalysts that can access multiple kinetic states during a polymerization reaction in order to control sequence distribution. They devised a novel strategy for the synthesis of elastomeric polypropylene utilizing a metallocene catalyst whose structure was designed to interconvert between chiral and achiral coordination geometries on the timescale of the synthesis of a single polymer chain.
In collaboration with Jim Hedrick of IBM laboratories, the Waymouth Group has developed an extensive platform of organic catalysts for the controlled ring-opening polymerization of lactones, carbonates and other heterocyclic monomers. Mechanistic studies of nucleophilic N-heterocyclic carbene catalysts revealed an unusual zwitterionic ring-opening polymerization method which enabled the synthesis of high molecular weight cyclic polymers, a novel topology for these biodegradable and biocompatible macromolecules. In collaboration with the Wender group, the Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver drugs and probes into cells. These efforts combine elements of mechanistic organic and organometallic chemistry, polymer synthesis, and homogeneous catalysis to rationally design new macromolecular structures.

Kelly Wetmore is a graduate student in Adam Arkin’s lab at UC Berkeley with over 15 years of experience in microbial physiology and genetics before and during graduate school. She has been instrumental in developing a number of next-generation tools and protocols for microbial functional genomics. Kelly is supporting the CUBES team in applying these tools to optimize the core biomanufacturing microbes in physiologically more-or-less relevant conditions. She is also part of a large DOE environmental systems biology project in which she is developing a new technology to query high-throughput genetic interactions.

Yongao (Mary) Xiong is a Ph.D. candidate in the Department of Chemical Engineering at UC Davis in the McDonald-Nandi Lab (http://mcdonald-nandi.ech.ucdavis.edu). She received her B.S. in Chemical Engineering from University of Washington, Seattle. She has mastered in recombinant protein production, purification, and functional characterizations using plant systems. Her work includes the process optimization of transient protein expression in leaves/cells utilizing agrobacteria-mediated gene transfer, chromatography method development (resin and membrane-based), and bioassay design. In addition, she is investigating approaches to modify and control protein N-glycosylation profile through subcellular targeting, the incorporation of glycan processing enzyme inhibitors and in vitro enzymatic treatment. Mary examines the effects of N-glycosylation on protein properties and molecular structures. She has started working on fine tuning of downstream process engineering of the recombinant PTH-Fc and functional characterizations using a combination of label-free protein-based assay and cell-based assays.
Shunsuke Yamazaki graduated Tokyo University, Japan, where he investigated the mechanism of bacterial lipoprotein transport in the laboratory of Hajime Tokuda. He is then hired Ajinomoto Co., Inc. and joined Research Institute for Bioscience Products and Fine Chemicals, Kawasaki, Japan, where he worked on breeding strains and developing several processes for production of amino-acids and pharmaceuticals. He was currently in charge of investigation of pharmaceutical production using enzymatic conversion process. He became a visiting scholar researcher of Adam Arkin lab at UC Berkeley, CA, USA.

Peidong Yang received a B.S. in chemistry from University of Science and Technology of China in 1993 and a Ph.D. in chemistry from Harvard University in 1997. He did postdoctoral research at University of California, Santa Barbara before joining the faculty in the department of Chemistry at the University of California, Berkeley in 1999. He is currently professor in the Department of Chemistry, Materials Science and Engineering; and a senior faculty scientist at the Lawrence Berkeley National Laboratory. He is S. K. and Angela Chan Distinguished Chair Professor in Energy. He was recently elected as MRS Fellow, and as a member of the National Academy of Sciences and American Academy of Arts and Sciences.
He is the director for California Research Alliance by BASF, and co-director for the Kavli Energy Nanoscience Institute. He is one of the founding members for DOE Energy Innovation Hub: Joint Center for Artificial Photosysnthesis (JCAP) and served as its north director for the first two years. Yang is an associate editor for Journal of the American Chemical Society and also serves on editorial advisory board for number of journals including Acct. Chem. Res. and Nano. Lett. He was the founder of the Nanoscience subdivision within American Chemical Society. He has co-founded two startups Nanosys Inc. and Alphabet Energy Inc. He is the recipient of MacArthur Fellowship, E. O. Lawrence Award, ACS Nanoscience Award, MRS Medal, Baekeland Medal, Alfred P. Sloan research fellowship, the Arnold and Mabel Beckman Young Investigator Award, National Science Foundation Young Investigator Award, MRS Young Investigator Award, Julius Springer Prize for Applied Physics, ACS Pure Chemistry Award, and Alan T. Waterman Award. According to ISI (2002-2012, Thomas Reuters), Yang is ranked as No. 1 in materials science and No. 10 in chemistry based on average citation per paper. His main research interest is in the area of one dimensional semiconductor nanostructures and their applications in nanophotonics and energy conversion

He is currently working as a Researcher with Professor Dr. Lance C. Seefeldt at Utah State University. He received his PhD in Organic Chemistry from Nankai University, Tianjin, China in 2007 and PhD in Biochemistry from Utah State University in 2013. After that, he continuously worked with Dr. Lance Seefeldt as postdoctoral fellow focusing on understanding nitrogenase mechanism with a broad range of interdisciplinary strategies, including biochemical, biophysical, and electrochemical methods. His research interests include metalloenzymes, small molecule activation, and relevant catalyst design and mechanistic studies.

Kevin earned a BS in Chemical Engineering with minors in Electrical Engineering and Mathematical Sciences from Michigan Technological University. He has a strong interdisciplinary background from his time working in a variety of industries. His PhD research involves the production of pharmaceuticals in transgenic plants within the scope of the NASA CUBES project.

Spencer is a senior at UC Berkeley studying MCB and astrophysics. He joined CUBES in October 2021 and is currently working with Aaron Berliner on an examination of habitability in black hole accretion disks. Outside of astrobiology, Spencer is interested in music and education, and helps direct an organization providing free college admissions prep to communities in the Bay Area. In his spare time, Spencer likes to read, play piano, and game.

Cindy is a second-year undergrad at UC Berkeley studying computer science. She is interested in applying CS skills to space research. At CUBES, she is working on building object oriented models to simulate and optimize a biologically-driven Mars exploration mission. Outside of academics, she practices Wushu (Chinese martial arts) and goes on spontaneous adventures to the beach.

Hao Zhang is a 4th year graduate student in Chemistry at University of California Berkeley with Prof. Peidong Yang. She received her B.S in Material Science and Engineering from University of Science and Technology of China (USTC) in 2014.
Her research is focused on the CO2 fixation via photosynthetic biohybrid systems(PBSs) in the MMFD division. The non-photosynthetic bacteria could be photosensitized by using the semiconductors to reduce the CO2 into multicarbon products, such as acetate, ethanol, and other valuable products. Such PBSs inherits both the high light-harvesting efficiency and the superior catalytic performance from solid-state semiconductors and whole-cell microorganisms, respectively.
Shuyang is a post-doctoral research associate working with Dr. Bruce Bugbee in the Crop Physiology Laboratory at the Utah State University. Her current research is focused on improving the understanding of whole-plant photosynthetic and morphological responses of food crops to light quality and quantity, primarily under artificial light in controlled environments. She received her PhD from the horticulture department at the University of Georgia in August 2017.

Liangzi is a graduate student in Criddle-group at Stanford University. She is working on improving the metabolic function in autotrophic microorganisms to enhance carbon efficiency and produce high-performance bioplastics as part of CUBES.
She is interested in sustainable biomanufacturing, bioremediation, as well as carbon capture and utilization.